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Abstract— In this analysis solutions for concentrated ring loading in a transversely isotropic full
space or half space are found. The elastic field is derived by integrating the known fundamental
point force solutions along a circular ring. Three cases of ring loading are considered. Taking the =
axis along the material axis (the = = 0 plane is the isotropic plane), the first case studied is when the
ring load is in the - direction, referred to as normal loading. The other two cases are shear ring
loads directed in the plane of isotropy. In the first instance, the ring load is unidirectional and
independently applied in either the x or y direction. The second case considers the axisymmetric
radial and axisymmetric torsional ring loads. The solution for ring loading applied to the surface
of a half space is first obtained. Subsequently the solutions for ring loading in a full space and
buried ring loads in a half space are found. In all cases the elastic displacement and stress fields are
evaluated in terms of closed form expressions containing complete elliptic integrals of the first,
second and third kinds. An interesting feature of the full space solution is that the potential function
and its radial derivatives exhibit a cylindrical discontinuity for negative = values. However, it is
shown that these discontinuous functions do provide continuous displacement and stress fields. A
limiting form of the solutions for transverse isotropy also provides the corresponding results for
isotropic materials. i{C 1997 Elsevier Science. All rights reserved.

1. INTRODUCTION

Fundamental point force solutions have played an important role in the application of
linear elasticity to solve problems of practical interest. In particular, the point force solution
by Kelvin for a full space. the solutions by Boussinesq and Cerruti for point loading on the
surface of a half space (see for example, Love, 1927) and the Mindlin (1936) solution for a
point force buried in a half space have found many uses in contact mechanics (Johnson,
1985), micromechanics (Mura, 1982) and Boundary Element Methods. To a large degree,
application of these solution usually involves integration. For example, elastic fields result-
ing from concentrated contacts can be found by integrating the Boussinesq and Cerruti
solutions (Johnson, 1985). Elastic fields in a full space or half space caused by inclusions,
inhomogeneities or cracks can be obtained by integrating derivatives of the Kelvin or
Mindlin solutions (Mura, 1982). In studying composite materials, the bimaterial Green’s
function given by Rongved (1955) has found similar applications.

Integration of a point force solution around the circumference of a circle leads to what
is presently termed a ring load. Such a solution may have many uses. If a surface or interior
load is given over a circular area then the elastic field can be obtained by integrating the
appropriate point force solution. If the load intensity does not have an angular dependence
over the circular area, the elastic field can be obtained by multiplying the ring loading
solution by the radial load distribution and integrating in the radial direction only. The
solution for uniform pressure applied to a circular area on the surface of a half space solved
by Love (1929) could have been obtained in this manner. Another example, displaying the
usefulness of the ring loading solutions, is provided by Hasegawa er al. (1992b, 1993). In
these papers the axisymmetric ring loads were integrated to obtain closed form expressions
for the elastic field caused by a uniform eigenstrain prescribed in a right circular cylinder
embedded in a full space or a half space.
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A common thread among the solutions noted above is that they are for isotropic
materials. For non-isotropic materials closed form solutions to the point force Green’s
functions are very limited. The exception is when the material is transversely isotropic and
the isotropic planes are parallel to the surface or interface if present. In this case the
solutions have a strong resemblance to their isotropic counterparts. The solutions are more
complicated in that five elastic constants are involved. However, the elastic fields in many
cases have a simpler form. The first point force Green’s function for an infinite body was
given by Elliot (1948) when the force was perpendicular to the isotropic plane. Pan and
Chou (1976) noted other previous investigations and gave a solution for a general force.
Probably Shield (1951) was the first to give the solution to a force buried in a half space
when the force was perpendicular to the surface. Fabrikant (1970) and Pan and Chou
(1979) note some other previous half space solutions and give a solution for a general force
near the surface of a transversely isotropic half space. Fabrikant (1989) has considered
many mixed boundary value problems for the transversely isotropic half space and has
developed a very convenient form to the full space or half space potentials and the general
expressions for the elastic field. This notation is adopted here.

In the present study, the potentials provided by Fabrikant (1989) for a point force in
a full space or on the surface of a half space are used. The potentials for a point force
buried in a transversely isotropic half space are derived in Appendix E using the present
notation. These potentials are integrated around a circle to obtain the solution for ring
loading. Three distinct loading cases are considered. In the first instance the ring load is
directed along the material axis (presently denoted as z). This is termed axisymmetric
normal loading since it acts normal to the isotropic plane and perpendicular to the half
space surface if present. The second case is a unidirectional shear ring load in either the x
or v direction which acts in the plane of isotropy. The third loading is axisymmetric radial
and axisymmetric torsional ring loading. again in the isotropic plane.

Some of the ring loads considered here have been evaluated previously. Kermanidis
(1973) used the elastic reciprocal theorem to evaluate the elastic displacement fields for ring
loading in an isotropic full space. He considered the axisymmetric cases of normal, radial
and torsional loads. His results were given in terms of complete elliptic integrals of the first
and second kinds. Similar results have recently been derived by Hasegawa er al. (1992a)
using Hankel and Fourier transforms. They evaluated the elastic field for analogous ring
loads applied near a bimaterial interface. Their results were given in terms of two Legendre
functions and the complete elliptic integral of the third kind. For similar materials their
results are in agreement with those of Kermanidis (1975). For a transversely isotropic non-
homogeneous material, Erguvan (1987. 1988) has considered the axisymmetric torsional
ring loading case only. Hasegawa and Watanabe (1995) have evaluated the displacement
fields for axisymmetric ring loading applied on the surface of a transversely isotropic half
space. Hasegawa and Ariyoshi (1995) considered a related problem for a transversely
isotropic full space. The present authors are unaware of any ring loading solution for
unidirectional shear traction which is one of the cases considered in this study.

As noted above, the ring loading solutions will be evaluated by directly integrating the
potentials for the point force solutions around the circumference of a circle. Although the
derivatives of the point force potentials are continuous functions, it is shown that integrating
them around a circle leads to functions with a discontinuity along the cylindrical shell
p=a. - <0, where p = a is the radius of loading. If the ring loading is applied to the
surface of the half space z > 0, this discontinuity is of no consequence. For full space
problems or ring loading buried in a half space, this discontinuity enters into the solution.
The nature of the solution for transverse isotropy leads to the elastic field being written as
the sum of two or three terms. It is shown that although each term in the summation is
discontinuous, the discontinuities cancel in the summation process leading to a continuous
elastic field. Here, continuous, refers to the regions = > 0 or = < 0. On the plane = = 0 the
elastic field may still contain a discontinuity as one passes from inside to outside the ring
of loading. However, the elastic field is continuous as one passes across the z = 0 plane,
say going from -z > 0 to = < 0, either inside or outside the ring of loading. The direct
integration of the potential functions leads to their evaluation in terms of complete elliptic
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integrals of the first, second and third kinds. The form of the elliptic integral parameter
naturally occurring in this process leads to an elliptic integral of the third kind which has a
discontinuity along the entire cylinder p = a. A better form to the solution is obtained using
well known transformation formulas for the complete elliptic integrals of the first and
second kind along with a similar but more complicated transformation formula for the
complete elliptic integral of the third kind recently derived by Hanson and Puja (1996a).
This form allows the discontinuity in the derivatives of the potential functions for p = a,
= < 0 to be isolated in a simple form. The continuous part of these evaluations is written
in terms of the function /(u,v:; 1) introduced by Eason et a/. (1955). This function is an
infinite integral involving products of Bessel functions of integer order, an exponential and
a power. For various integer values of u, v and 4. /{(u. v 2) was recently re-evaluated in a
more convenient form by Hanson and Puja (1996b). These results are used extensively in
the present evaluations for the elastic fields.

The solution for transversely isotropic materials has an additional complication not
occurring in isotropic results. This is caused by the - coordinate being scaled by three elastic
parameters, two of which may be complex conjugate for some materials. Thus, any function
(such as complete elliptic integrals) which occur in the expressions for the elastic field must
be evaluated for complex values of their parameters. The first several sections of this paper
pay particular attention to this issue. Then the different ring loadings are considered when
applied to the surface of a half space, in a full space and buried in a half space. The details
of the integration processes needed for each different geometry are deferred to appendices
for the interested reader. Finally, the isotropic solutions for ring loading on the surface of
a half space, in a full space or buried in a half space are obtained by taking a limiting
form of the solutions for transverse isotropy. The details of this are also provided in the
appendices.

2. POTENTIAL FUNCTIONS FOR TRANSVERSE ISOTROPY

A potential function formulation for transverse isotropy was first given by Elliot
(1948). The notation of Fabrikant (1989) is presently adopted. The stress strain relations
in Cartesian components are given below with the - axis taken as the axis of material
symmetry

~
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Here, u, v and w are the displacements in the x. v and - directions and A4,,. 4., 433, A4 and
A are the elastic constants.

The solution of the equilibrium equations in terms of three potential functions F,, F;
and F; is given by Fabrikant (1989) in the form
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, . JoF, oF,
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with i being the complex number. i = \/(—1). m, and m, are constants defined below, and
u‘ is the complex displacement u = u+ir. The operator A and the operator A used sub-
sequently are given as

P b . id o~ _
< I'P—=e'¢(— e A=AA= - 3)

¢
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The functions F; satisfy the relations

AF 437 =0. j=1.23. )

where 7, are also constants. The constant 7+ is given as ;3 = Aq4/Aqe While 77 =n,, j=1,2
and n; are the two (real or complex conjugate) roots of the quadratic equation

Ay Asan; +[A (A3 +2440) — A, (Assln+ A3 A4, = 0. (5
The constants m, are related to 7, as

= A0t A Autdali (6)
A+ A4, Asi—77A4,

Using the stress combinations in Cartesian or cylindrical coordinates ¢, = 0,,+0,,
= 0,044, 0= 0, —0, +2it, = e*"”(aw, Op+27,,)and 1. =1, +it,. = e’d’(t,,:+ir¢:),
the stress field can be written in the following form

p3}
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At this point some discussion as to the nature of the above solution is in order. It will
be seen below that the three potential functions are written in terms of a single function as
F; = ¢;F(z;) where z; = z/;, and ¢, are constants that depend on y; and m;. From eqn (5) the
two roots #; and #n, are either both real or complex con]ugdtcs Hence m, and m, are also
both real or complex conjugates The quantities 7, and y, were introduced by Fabrikant
(1989) to denote /n, and /., respectively. Since 7; is always a real positive number, real
positive values for n, and n, (and hence m,, m,, 7, and },) will give real displacement and
stress fields. On the other hand, complex conjugates #, and », imply complex conjugates m,
and m, and thus 7, and 7, must also be complex conjugates for the elastic field to be a real
quantity (Elliot, 1948). This forces the location of the branch cut in the complex plane for
the square root function. Therefore the polar angle 8 in the complUlane must be measured
as —n < 0 < « for the complex numbers #, and n,. Thus 3, = /n, and y, = v n2 are then
complex conjugate with a positive real part. Since m, and m, satisfy the relation m;m, = 1
(Fabrikant, 1989), complex conjugates m, and m. imply they each have a modulus of unity.
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The different cases can be summarized as follows. If n, and n, are positive real numbers
then 7, and y, are the positive real square roots. If n, and », are complex conjugates. then
7, and 7, are their complex conjugate square roots with positive real parts. The case of one
real positive root and one real negative root cannot occur (see Appendix F) and thus the
only other possibility is if , and 1, are both real and negative (§ = —n). In this case their
square roots would be negative imaginary numbers (6/2 = —n,;2). Hence, both y, and 7y,
would be complex but not conjugate and real solutions for the elastic field would not result.
This conclusion appears to be true for any definition of the branch of the square root
function. It is shown in Appendix F (for axisymmetric deformation see also Lekhnitskii,
1960) that this case cannot occur based on certain well known restrictions imposed on the
elastic constants.

The final point that needs to be clarified concerns the quantities =, = z/y,. Since 75 is
always positive real, z, is always real. Hence the sign of z; depends on the sign of z. Similar
reasoning also applies to =, and z, if y, and 7, are positive real. If 7, and 7, are complex
conjugate (and thus have a positive real part), then 1/y, and 1/y, also have positive real
parts. Thus the sign of Re {z,} and Re {z,} depends only on the sign of z. If one considers
a half space problem z > 0, then z; is a positive real number and z,, =, are either positive
real or have positive real parts. If a full space problem is considered, the above reasoning
also applies to the region z > 0. In the region z < 0, =, is a negative real number and =, z,
are either negative real or have negative real parts. One may conclude in all cases that the
sign of Re {z;} (j = 1.2.3) is the same as the sign of = itself.

3. ELLIPTIC INTEGRALS AND SOLUTION PARAMETERS

The solutions to all of the problems considered in this paper will be written in terms
of complete elliptic integrals of the first, second and third kinds. These are denoted as F(k),
E(k) and I1(n, k) respectively. They are given in standard form as (Gradshteyn and Ryzhik,
1980)

! dy =2 do

Fh)= | ——— = | ®)
o (1—=x)' ~(1—k*x")' - o (I—k"sin" @) -

1 1_k3',: 12 RS T2 N .
E(k) = [ U=y “dy \,) 1d\ :J (1—k*sin>0)"' 2 do. 9
JO (l*.\")l - 0
! dx 2 de
(n. k) = . T T T e
o (I=nxH)(1=x)'" (1 =k*x)' 2 Jo (1—nsin® O)(1 —k"sin” )" *

(10)

where k is called the modulus, k" = (1 —47)'? is the complementary modulus and # is the
parameter. Note that 0 < k, &, » < 1 must hold for real positive values of these quantities.
The solutions will contain the two parameters /,(a). /-(a) given as

5

3
y-

Lia) =5 {{(p+a) +=°]" " =[(p—a) +7]
Lay =5 {{p+a) +=]  +[(p—a) +2°1 7). (11
These parameters, first introduced by Fabrikant (1989), allow the three-dimensional dis-

tance between the point (a, 0,0) on the surface and the interior point (p, ¢, z) to be written
in two-dimensional form. That is
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P’ +a*+: =2apcos(p) = I3 (a)+ 13 (a)— 21, (a)l>(a) cos(e). (12)

where

B@y+8a) =p*+a*+22. 1(a)x(a) = ap. (13)

Note that it is easy to see /,(a) < l,(a) while it can also be shown that /,(¢) < p. Both
inequalities are easily verified for real values of z. For the solutions in this paper, the
parameters k& and » in eqns (8)—(10) will be given as

k:]'(a) n:/%(a): a’
l(a)’ ol e

(14)

Note thatk =l whenz=0.p=awhilen=1latz=0,p <a.

The actual solutions in this paper will depend on /,(a), -(a). k and n as above but with
= replaced by =, j = 1, 2, 3. In this case they will be denoted as /,(a), /,(a), k; and n;. If z; is
real, then/,(a), ;(a), k;and n; are real and satisfy the inequalities above. Now consideration
is given to the case when =, and =, are complex conjugates. The same branch of the complex
square root function will be used as above. That is, the square root of a complex number
will have a positive real part ensuring square roots of complex conjugate numbers will
themselves be complex conjugate. In this case it is apparent that Re {[(p+a)® +z;}'*} and
Re{[(p—a)* +z7]' *} are positive. Thus Re {/,(a)} > 0.j=1,2.

Now it will be established that the modulus of &, [denoted as |kj|] for j =1, 2 is less
than unity. Since z; can be any complex number, first assume Im {z;} > 0. In this case one
can write

[(p+a)y +z7]'"  =e+ib. eb>0. [(p—a) +z;]'" =c+id. ¢.d>0,

(@ _emotio-d - lemor 6=
@) (et +ib+d) T et o) +(b+d)]?

(15)

In a similar manner it can be shown that |k| < 1 when Im {z}} < 0.

[t can also be easily shown that |n| <1 if p > a. To see this it is first noted that
Lia@hia) = ap = |I,{a)| |l,{a)| and this product is always a real number. Using eqn (15)
above one has

k| = |11,(a)] _ @) _ I/],(a)|:
T @l @) [ La)] ap

< 1. (16)

Using this last result. {1, can be given as

@ _ Il @) a
. ap p

|n,| =

<1, (17)

where the inequality holds if p > a. It remains to establish this result for p < a.

Some comments pertaining to the elliptic integrals defined in eqns (8)—(10) are also
necessary. They are denoted as F(k)), E(k;} and [1(n.. k;) in the solutions for the elastic field
since they depend on z,. These will be complex valued functions when z, and z, are complex
conjugate. Note that Re {1 —k; sin” 8} > 0 since |k;| < 1. To determine the elastic field at
a general point these integrals must be numerically evaluated. Thus the square root
(1—k; sin® 6)' * must also be chosen as above with a positive real part such that F(k)),
E(k)), H(n,, k) and F(k,), E(k,), [1(n,, k-) are complex conjugate.

Some final results which will be subsequently needed are now discussed. Since k| < 1,
then
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Re {l+k;} > 0. (18)
Also consider the difference /(a) —/,,(a) given as
lz/(a)—ll/'(a) = [2_/(51)[] _k/] = [(P'H): +Z,2]I . (19)
Taking the limit p — a in the above equation provides

Lim [£>,(a) 1, (@)] = Lim @)1 =k} = [2}]' . (20)

Using the branch of the complex square root defined above, it can be shown that

5

71" ==z, Reiz;} >0: [7]'" = -z, Relz} <. 2n

If -, is real. the above degenerates to the obvious result [z;]' * = |z;|, where in this case the
vertical bars indicate absolute value. Using the above result, it is also easy to verify that

(@] * = Lia), [(1+k)7) " =(1+k,). (22)

since they both have positive real parts as shown above.

4. TRANSFORMATION FORMULAE FOR THE COMPLETE ELLIPTIC INTEGRALS

Several transformation formulae for complete elliptic integrals will be useful. For the
complete elliptic integrals of the first and second kinds, the well known formulae are
(Gradshteyn and Ryzhik. 1980)

= , 23
1+k )

(1+k)

2/k\ 2K\ [2E(R) — (1 —k*)F (k)]
F<1+k>—(l+k)F(k), E(

A formula for the complete elliptic integral of the third kind was derived by Hanson and
Puja (1996a) which can be put in the form

‘ 20K\ h(@)(1+k)a+
(a—p)H(p,]:_k):n'(a)( 5 Hatp) 1 +sgn(a—p)}
4ap
+(1+k)(a+p)|Fk)—2M(n.k)}. p= - (24)
(a+p)

The above equations were previously used by Hanson and Puja (1996a.b) when = and
hence, k. n were real quantities, and in particular = > 0. Equations (23) are even functions
of z and hence also valid for - < 0. The first term on the right side of eqn (24) is an odd
function of z while all the other terms in this equation are even functions. Thus, if = is
replaced by absolute value of - in the denominator of the first term on the right side, eqn
(24) is also valid for = < 0. Also note that (a— p)I1[p.(2,/k/1 + k)] has a discontinuity along
the cylinder p = a (where p = 1), caused by the divergence of this integral.

The above equations are also needed when - is the complex quantity ;. Equations (23)
are valid for complex valued &, but eqn (24) is not. To fix this equation the discontinuity
in H[p,(z\/k/l + k)] must be analyzed. From Byrd and Friedman (1971) the behavior as
p—lis
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E(1) A2 =)

(. 1) = F(1)—
(7 '[) () l—f: 4(]_,2)32(1_“2)I2

+0(1—a2). (25)

Substituting »° = p = 4ap;(a+p) and t = 2\/%/(1 + k) and simplifying leads for p - a to

Lim(a—p)I1

o sa

Tk = —sgn(a—p)+O(a—p). (26)

ZV/”% (1 +k)(a+p)
p 2(1—k)

where £ is evaluated at p = a. Now if k is replaced by &, then from eqn (20) the above result
becomes

Lim(a—p)I1

p—a

(P B k/>: A DOHENCED) pna—p)+ 0@ @)

14k, 2232

Therefore eqn (24) can be modified to complex values as

2k nh@) (1 +k)a+
(a—p)]‘l(p‘ 11k>: : J(a)(z[—z]u'i(a 21+ sgnta- )
+ (1 4k )(a+p)(Flk)—2T0(n,.k,)}, (28)

where the square root is chosen as in eqn (21). Letting p — a in this last equation produces
another interesting result

[’7‘
Lim {F(k,)—2[(n,.k,)} = — %fl)— (29)
p—d -2 2

L=y

which can also be obtained from eqn (26) of Hanson and Puja (1995b).

5. RING LOADING ON THE SURFACE OF A HALF SPACE

Consider the transversely isotropic half space - > 0 shown in Fig. 1, where the plane
of the surface is an isotropic plane. Using cylindrical coordinates (p. ¢.z), a point force is

Fig. 1. Geometry and coordinate system for point loading
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applied on the surface at p,, ¢, with components 7, 7, and P in the x, y and z directions,
respectively. The potential functions for these fundamental point force solutions were put
in a very convenient form by Fabrikant (1989). For the point normal force P, the potentials
are

PH?y,
Fi(p.¢,z2:00.¢0) = —~In[R, +z,]

(m,—1)
PHy,
Fy(p., 2500, 0) = ———In[R, + 5]
(m>—1)
F3(p~,¢v:;pl)vd)0)=0 (30)
with
R} =p*+ps—2ppocos(@—y)+z;, z,=—, j=12.3, (31)
il
and the real constant H is defined as
_ (“1‘|‘+‘“/:)Al[7 . (32)
2n(A,, As— A7y)
The potentials for point shear loading are given as
F e by) = TR L TAY(E)
P ¢, 21 pos Do —(m1~1)2( + (=
Folpoboz:pon ) = — 2 YR 4 TAY(2)
f’.f* ﬂ-ﬂp()'- 0 (n]:—l)z X“3
Fi(p.d.2:po o) = i———(TA—TA)x(z3) (33)

4nA,,
where 7= T, +iT,, an overbar indicates complex conjugation and the function y(z)) is
xz)=z,In[R+z]-R. j=1223. (34)

5.1. Ring normal loading

First consider an axisymmetric ring normal load on the surface located at a radius of
p = a with a density (force per unit circumferential length) of Q as shown in Fig. 2. To
obtain the potentials from eqn (30) set p, = a. replace the force P with Qa d¢, and integrate
the result from 0 < ¢, < 2r. The potentials become

_ HyQa

Fi(p..z2) m,— 1)

Wip.z). j=1.2.

Yip.2) = f in[R+:]1d¢. R = p*+a’—2apcos(dy)+=7, (35)

)

where ¢ has been set equal to zero since it can be shown that the integral is independent of
¢.

The various derivatives of this integral needed for the elastic field are evaluated in
Appendix A. For the half space region z > 0. the above integral as well as its derivatives
are continuous functions. From eqn (2) the displacements become
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.
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=
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Fig. 2. Ring loadings in the x. 1 and = directions.

o

Y(p.z;) =2nHQae"® Z T‘jl {0,1:0),

¢

(m;—1) Cp

AZF HQa“”Z

(36)

w= > m_F = i— ‘~ .= 2nH i _1)1(0 0:0), (37)

where the functions /(g v;4) are given in Appendix D in terms of the complete elliptic
integrals F(k), E(k) and Il(n, k). The functions [,(u. v: A1) are obtained from I(u.v;2) by
substituting = — z; in these formulas. Thus /{u. v: ) are given in terms of F(k)), E(k;) and
[(n,. k).

The stress field can be evaluated in a similar manner leading to the results

I :
o) = —dnaHOA, Y © (HJ’”;)” 1,00.0: 1), (38)
i=1 -
== TG aQ«v‘j Y (1Y (0,011, (39)
1T i) =1
0y = 4naHQ A ¢ ¥ \—-G 0.0:1), (40)

/1( )



Concentrated ring loadings 1389

- -y v, @)

where the combination G(u, v 4) is defined in Appendix D and the identity

(m+1) (= 1y~
(m,—1) B 2nHALL (G —75) )

(42)

has been used in eqns (39) and (41) above

5.2. Ring shear loading in the x and vy directions

Attention is now focused on the case of uniform ring loading applied in the x and y
directions as shown in Fig. 2. The force per unit circumferential length in the x and y
directions are denoted as S, and S, respectively. The potentials can be obtained from eqn
(33) by setting p, = ¢ and replacing the complex force T with Sadgy(S = S,+iS,) and
integrating the result from 0 < ¢, < 2. The potentials are now

aHy,vs - - ,
Fip.$.2) = f:i)[SA+SA]r(p.:,). j=12.

Z(m,
Fi(p. 9.z 4 A SAIC(p. z3).
F(p.2) = f g, = f [=In [R+2]— R]dgy, (43)

where R is defined in eqn (35). The derivatives of this integral are evaluated in Appendix
B. Using results for the p derivative allows the potential functions to be written as

naH, ; - .
Fip.¢.2)y = — o, ;1) [Se “+Se”|I(0,1:—1). j=1.2,
- (11,, — i i 44
Fip.¢p.z) = 34 [Se " —Se“(0,1: —1). (44)
44

The displacements and stresses for this case are

- l _
u' = —maly, 7, Y ————[Si,(0.0:0)+S5¢*’G,(0.0:0)]
Zm—1)
E3[S1,(0.0:0)— S G1(0.0:0)], (45)
2/‘144
wo=2naH7y,7,[S.cos p+ S, sin @] Z (m Tyl 1,(0,1:0), (46)
=17
7 — (1 4+m)y3
= —dnaH; 72 A46[S, cos @+ S, sin @] Z —l) 1,00.1:1), (47
I=
o= — T2 (S cospa S, sing] ¥ (— 1) L. 1:1). (48)
=1

(:“I -2 )
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L = 2maHy,piAe S
0> nary,y fmj;(m,___l)

[Se10,1;1)+Se H(0,1;1)]

— L Se* 1,0, 1: 1) = Se™ Hy(0,1: 1),
I3
o ah 2 (=1y"!
2y —72) /5 7

[S7,(0.0; 1)+ 8e*G,(0,0: 1)]

— SIS1,(0.05 1) = §eG,(0.0; 1],

where the combination H(u, v; 4) is defined in Appendix D.

5.3. Ring shear loading in the p and ¢ directions

(49)

(50)

The final ring loadings investigated on the half space are the axisymmetric cases for
shear loading in the radial and tangential directions shown in Fig. 3. The force per unit
circumferential length in the p and ¢ directions are denoted as S, and S, respectively. The
potentials can again be obtained from eqn (33) by setting p, = a and replacing the complex
force T with Sae“vd¢, (S = S,+iS,) and integrating the result from 0 < ¢, < 2n. The

potentials are

Hy, - _ .
Fp.6.2) = 50, 55 [SRQ0. 9.2) + SADp. 9.2)). j=1.2.
Fy(p.9.7) = 4 [SAQ(p, §.7)) — SAD(p, 6. 2],
44

Qp. d.2) = J eg(z) do. Qp.d.z) = J ey (2) deb,

0 0

x(z) =zIn[R+z]—R., R =p’+a’ —2apcos(¢p—do)+:z°.

“
Z

Fig. 3. Ring loadings in the p and ¢ directions.

(51
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The function Q(p, ¢, z) and its derivatives are evaluated in Appendix C. The function
Qfp, d,z) 1s

Qp.¢.z) = 2me?I(1,1: —2). (52)

from which the potentials become

, 2rnaHy v, 0 ] 2naHy vy, .
Fip,9,z) = o 11) S[ }1(1 1, )——(;;- II; SL(1.0;-1), j=12,

]
Filp.¢,2) = & s{(ﬁp ;]13(1,1;_2)2_ 1,(1,0; —1). (53)

 Aug

Differentiation of these potentials leads to the elastic field

= —2naHy,7,S, Z .—1)1/(1 1:0) P11, 150), (54)
1= —27{01‘1,,,35}, Z _1/(1 O 0) (55)
j= II;(’ —1)
2 a2 l YT
5\ = dmaHy 3ades, S DU G o), (56)
j=1 'y/(m/-—l)
= I g Syt L0, (57
(i —72) "5
0, = —4naHy, 714465, }:*4;(1 0; 1)+~S e?Gy(1,0:1),  (58)
. j+1
f__:(sa - Z( b I 1 y—iaS, e, (1,1;1). (59)

1

The corresponding results for an isotropic half space can be found in Appendix G for
the three cases of ring loading considered above.

The displacement fields for the loadings 0, S, and S, have been previously given by
Hasegawa and Watanabe (1995). Their results for Q and S, are in agreement with the
present displacements if one substitutes — 1/(2ra) for Q and S, and the relations in eqn
(H29) are used. The same procedure does not lead to an agreement for the displacements
caused by S,. It appears that the expressions in eqns (9) and (12) of their paper may contain
misprints.

6. RING LOADING IN A FULL SPACE

Consider now the transversely isotropic full space where the z = 0 plane is an isotropic
plane. Again using cylindrical coordinates, a point force is applied on the = = 0 plane at p,
¢o with components T,, 7, and P in the x, ) and = directions. The potential functions for
these fundamental point force solutions were also given by Fabrikant (1989). For the point
normal force P, the potentials are
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(—1y-'p

Fp.d.z:py,0y) =——In{R,+z]. j=1.2,
AP d.21p0. D) 47[‘444(”117’”3)n[ Rl N

Filp.¢.z1pg.¢y) = 0. (60)

with R; defined in eqn (31). For the shear forces the potentials are

=yl X LT o,
Fp. .22 p0.00) = 8mA4, (1, — s )m( TA+TMx(z). J=1.2
Filp.¢.z:po. o) _8 :4’ (T/_\‘T/\)X(—':)~ (61)
44

where %(z,) i1s also as defined above. Notice that the only difference in the potentials here,
as compared to the half space, are the constants.

6.1. Ring normal loading
Consider a ring normal load on the - = 0 plane located at a radius of p = ¢ with a
density of Q. Following the above procedure the potentials become

_1/ 1
Filp.d.z) = _Qa— 1)

4n A, (m, —

t//(p.:,). j=1.2. (62)

where the derivatives of Y/(p. z;) are found in Appendix A. Note that for - > 0, the derivatives
of Y(p.z,) are continuous functions but for - < 0 the radial derivatives of y(p.z;) are
discontinuous. To see the effect of this discontinuity, consider the complex displacement ¢
which is given as

—1) (./%//(Pw/)

~ Qae” Z( ]),+I|:ﬁn1(01 0)+ {0.:>0;—?;:I[]—sgn(pa)]. :<0}}

47TA44(”71 —mq =

E Qaeir}) hl . .
- 2A4, (1, —m5) ,;(_ Y7 LO. 120, (63)

Since the discontinuous term is independent of z; it cancels in the summation process. Thus
the displacements are continuous functions as they should be. Also note that the =0
plane is one of anti-symmetry and thus * should be an odd function of z. The first term of
1(0,1:0) is p~' which is an even function while the second term of 1(0.1;0) is an odd
function. The first term cancels in the summation, again yielding the correct solution
behavior. The displacement w is

a - 2 (=1y~!
w= S =yl Q0 DTG0, (6d)
(

o ooae i
z P NN e 2A44(I711 —m- ), 7

Mu

which is an even function of -.
To evaluate the stress components, o, and o.. are considered first. They can be evaluated
as
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aQAqg, (=1 = (L 4m )y

Ay (m, —’712)_/:1 ;',2

o, = —

140,0:1). (65)

o= — Sy ) 10.0:1), (66)

a 2(m; —my) 5
The stress component g, is now determined. It has the form

aQAqe??
0‘: -

- 2n AL (my —ms)

2 A2 1¢
Z(_ ])/+1 {,(,2 — f}l//(p :,')

j=1 c

CIQAhéfilix 2 (—1Y*'G,0,0:1),  (67)

Ags(my —m,) 5

where again the discontinuous terms sum to zero. The last stress component is 7. which
becomes

i 2 _1 BN l
fo_ aQe’ 3 (—1) .‘( +m,) 10.1:1). (68)

2(my, —ms) o

i

The above elastic field has the same functional form in the region = > 0 and z < 0 since the
discontinuities cancel. This solution is identical to the corresponding half space result except
for the differing constants multiplying each term.

6.2. Ring shear loading in the x and vy directions
The elastic field for uniform ring loading applied in the x and y directions will now be
found. Using S, and S, as before, the potentials are now

Fip,$.2) o= SA+SAIT(p,z). j=1.2

AP o) = 87 Ay, (1, —mg)m,[ (o). =12
ary -

Fi(p.$.2) :»8“‘ [SA — SAIT(p. =), (69)
Ay

where I'(p, z,) 1s defined in eqn (43) and its derivatives are evaluated in Appendix B. Using
equation (B35) these potentials are

(1‘,',.( - l)l+ ]
Ay (m —my)m,

Fip.¢.2) = [Se ""’+5c“”]|:—27'c1,-(0. 1:—-1)

J 2nz,
+<0.2>0: ——[1—sgn(p—w)].- < OH J=12,
P

l

Fi(p,¢.2) = iIﬂif[Se “”Se"’”][2n1;(0. 1: -1

8nA,,
21z,
+ {O.: >0:— f%* [1—sgn(p—a)].z < (JH (70)

This displays that the potential functions can be explicitly evaluated in terms of dis-
continuous functions however it is more convenient to substitute eqns (69) into the
expressions for the elastic field.
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Proceeding in this manner, the displacements are now found. The in-plane dis-
placements become

a = "/"/(-—1),+l

o 87'5A44(m| _"72) i=1

[SA+SA* T (p,z))—

ay . )
87tA_;4 A

(71

Here it is noted that Al(p,z,) is a continuous function but A'T'(p,z) is not. It is also
apparent that the constant inside the summation sign is also more complicated than in the
previous loading example. Nevertheless it will now be shown that the discontinuous terms
cancel. Taking only the discontinuous terms for = < 0 leads to the expression

a L) g 2m
s _ 1 _ —
SnA44(n1, —m,) /= m; 2 [1 =sgn(p—a)]
i3 @ 2y 2WC5
- - 1_ \ . .
+ $7A.s Se e [1—sgn(p—a)]
a 2 —1y*!
N @447(111] —m,) S¢ [1 —segnip—a)] Z m,
S 20 212 1— 72
87zA4a ¢ [ sgn(p —a)l. (72)
where the relation ;,z; = = has been used. The sum can be evaluated as
2 (—1y+! 1 ] ,—
T B (73)
= T m y M m, M,

since nym, = 1 (Fabrikant, 1989). It is seen that the discontinuity in the two term summation
resulting from F; and F, cancels with the one caused by F;. Taking the remaining terms
provides the final result

. : >(— ) - i
¢ = . 20 26 . L0
u 4444(”“_’717)/: [S1,(0,0:0)+Se~?G,(0,0:0)]

+ 5 [S,(0,0:0) ~ $€7G1(0.0:0)], "
44,4,

In this case u¢ should be an even function of - however the first term of 7(0,1; —1) 1s an
odd function. This first term cancels in the summation process analogous to the dis-
continuous term above. The = directed displacement can be found as

,]

"ﬁ)

om 2 ) . . C
-y ¥ (=1 [Se +Se] L up.z)

=y, 0z 87zA44(ml—mﬁ), |

d

- Z

a

S — i C Al 2 _1 i1 .
871A44(ml—m:)[se +Se ]/;( ) [27{1,(0,1.0)

2n
+{0,:>0: - p [l—sgn(p—a)].:<0ﬂ‘ (75)

It is easy to see that the discontinuous term cancels leading to
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a

: : _1ytlr .
oo D) [S.cos ¢ +.S, sin @] ;( 1y*+'1,(0,1:0). (76)

W=

The stresses are now derived. The components ¢, and o.. do not have discontinuities
to consider and they can be easily evaluated as

aA66

(—1Y* 'y = (L +m)y3]

_ : 1(0,1;1),

o Toalm— [S cos ¢+ S, sin @] z oy (0,1;1)
(77

a i 2 —1)’*',,(1+m)
= — — 10,15 1).
G.. Z(m,—mz)[s‘ cos ¢+ S, sin ¢] ; ” L,1:1) (78)
Now g, is written as
B OA(,(, 2 (v])”l 66/‘4
0, = drd s, O ) Z " [SAA+SA*1C(p, : ,)— [SAA SA*IT(p, z5).

(79)

The terms involving A'T'(p, z;) are again discontinuous but cancel in the same manner as
for u“ above. The resulting expression has the form

ades 2 =1yt »
6, = ! e?1(0,1;1)+Se?"H,(0,1;1
T 244 (m—my) S m,; LS ) )
%[Se’%(o LDy —Se™ H,(0,1: 1)]. (80)
/3
The last stress component is
a L (—1Y (1 4my) . a -
= - LI — —SA° ,Z3).
) I ISA SN W - — g (SA= ST (p. )
(31)
The function A%y (p, z;) is discontinuous. Considering these terms lead to
a (= +m) o, 4n
= - - z = —a)),z<0

8n(m, —my) /= m, S0 pz[ sgnipalz <

a - . 4
+—Se7%{0,2>0:—[1 —sgn(p—a)].- < 05. (82)

87T p'

Using the result

Z (—1y*'(1 +m) (14+m)) _ Qf"mz) : (m- —_m|) I 83)
= m; m, M m m,

illustrates that these terms cancel leaving
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a 2 (1Y (1 4my)

B 4(m, —nm,) = m,

[S7(0,0:1)+Se**G(0,0:1)]
- 3[513(0.0; 1)~ $e G4 (0.0: 1)), (84)

6.3. Ring shear loading in the p and ¢ directions
The axisymmetric shear loading solutions are now found. Proceeding as in Section 5.3
while using the full space potentials in eqn (61) gives the potentials as

L aey P,
Flp§.2) = gt (SR 6.2) 4 SAD(p- .2 =12
Fylp§.2) = ¢ [SAQ(p. 6.20) = SAD(p. . 2. (85)

14

with Q(p. . z,) and Q(p. ¢. z,) defined in eqn (51) and evaluated in Appendix C along with
some useful derivatives. From eqns (C9) and (C10) these potentials can be rewritten as

__l j+ 1 n 1 _] 7+ 1
Fip,¢.2) = wik~ )75/,{(:‘)-%{)}%'(;).: =) [ (1.0; =1

47TA44(’77| o), T DA, (m, —m, )m
=+ {0.: >0:— %[1 —sgn(p—a)l.z < OH Jj=1.2,

ays ¢ A L
Fi(p.¢.2) = —47;4;45 {5 }f(ﬂ )= = 24, 5@5{13(1-0. 1)

+{0.:>0;~:C;[l~sgn(pa)].:<0”. (86)

The elastic field can be found by differentiating the above potentials. All discontinuous
terms cancel and the final results can be given as

Ga 5 7= )“] p
wo=— ”Z‘i7*<llm+ &wu01m 87

2A44.(m —my) S

a 2
(:_77777775 71/+I1 1‘0~0 88
" 2A44(n71 _1713) P f;(‘ ) /( ) ( )

adgq (=1 = 4m)A]
TP - . 9
o, = Agqlm, — m:)S,) Z o, 1,(1,0:1), (89)

j=1 i

)’j'(l+m),,

550

Yo — oy 1.0:1). 90
7(m, — > ) ﬂ/: m; ( ) ( )
A R 2= 1y*! ; .
G, = — 7777(1 66 S i Z l( } f"G/(l.()ll)'*‘ ﬂswer_d)c}(lqo;l)! (91)
Agq(ry —n1, ) Py m, e
= “ —_ P ( IL’;I(LI?IJI 1.1: a,iS w1 1.1:1 92
2(m, —n,) S /; ", A h- 277 e?L(1.1:1). (92)
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The corresponding results for an isotropic full space can be found in Appendix H for
the three loading cases considered above.

7. RING LOADING BURIED IN A HALF SPACE

The last loading case which will be examined is when the ring loads are applied below
the surface of a half space = > 0. The potentials for a buried point force perpendicular to
the surface were first found by Shield (1951). It is derived in Appendix E using the present
notation. For a force of magnitude P in the - direction at the point (p,, ¢,. #) the potentials
are

. _ (=1y'p S v
Fip,¢.2:po. o) = 4nA44(m1—m3)[ln [Ri+z]—In[R}+]]

:Ml - / ) P 132,
(/7? +])(Il -/2 ”Z( (1’”,,"'1)11'1 [R,”+( ,+ 1,,)]:|, ]

,—h I/ =z,+h. R’ =p +pi—2pp,cos(¢—do)+:7.

R;"l = p’+pi —2ppo COS(¢_¢1))+:I/’:~ R;, =p +p5—2ppo COS(¢'¢1))+(:/+}111):~
(93)

The potentials for a buried force parallel to the surface are also derived in Appendix E. For
a force with magnitudes 7, and T, at the point (p,. ¢,. #) the potentials are

- - _ (_I)/* B 1 4 i
Fip.¢.2:p0.¢0) = 8AL () — )|:m (TA+ TAY{x (=) + (=)}

2 (=D, + Dy, .
— - : TA+TAY(z;+h, = 1,2,
(m/+ l)(;‘l ‘A/‘l)n—':l m, ( N )X ! : ) l
Fi(p.¢.2:po. ¢o)—8‘A (TA=TA) (x(=3) + 2=}
44
() =R +]]=R), (=) = Z/In[R{+ =] = R (94)

X(:/ +hn) = (:/+hn) ln [Rjn + (:/+hr1)] - Rm-

7.1. Ring normal loading
Integrating eqn (93) leads to the potentials as

(_]}/+1Qa

Fip.$2) = g _mz)[w(p.:;)—wm. )

1y D = i=1.2 ‘
LT S E D <m,,+1>w‘p,.,+h,,>} j=12. (99)

where ¥(p, o) is defined in eqn (35). To evaluate the elastic field the following notation is
adopted

(uviz) =TuviA), -z Tipoviz) =1Iuviz), -z

=1

L(uviz)y = Hu,vii), -—>z,+h, (96)
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The first term for the potentials above corresponds to a point force in a full space and its
radial derivatives will be discontinuous in the region 0 < z < / since z; has a negative real
part. However these will cancel in the summation process as above. For the image force
and half space correction terms, =/ and z;+#, always have a positive real part and no
discontinuities occur. Using the derivatives in Appendix A the elastic field is

¢ = “& 1| p . , )
= S —my 2D [1,<0,1,0)—1;-(o,1,0)
+ +1)(,1 - ”Zl(—l) (m,,-+—1)1,,,(0,1,0):], (97
v 2A44(m1 mv)/zl 7 [1 (0. 0:0)- 1(0 0; ;0)
2 n+1 )
T 5 (m,,+1)1,"(0,0,0)}, 98)

o = —aQAq, 2 (— )’H[ ‘(l’{"m/)/]

I(0,0;1)—r/0.0;1
Asa(my —my) 5 I: A )~ I )

P
r

2)).
+'~’ n+l "‘+—1 1)?1 0,0_‘] R 99
(m,+ Dy, —72 HZI( (m M )} (99)
O _Z(m _mﬂ); —1y- (1+m,)[1;(0,0;1)—1'/.’(0,0;1)
2 Z( 1" m, + 1)1,(0.0; 1)} (100)
_ " )
D =) 2 (i + DI,
CQadgee™ & [ o
= % ml"’ﬂ‘?),Z( D G(0.0:1)—=G7(0.0: 1)
P DN G 101
o F D6 = )"Zl( 1"~ (m, + 1)G,,(0,0:1) | (101

2(m1—m )

— 1yt (14+m,)
Y

[1;(0, 1;1)—190.1:1)

2~ 2
+ T N (=1 (m,+ 1), 0,1:1) . 102
(m;+ 1y (1 —72) »;ZI( y Vi )] (102)

7.2. Ring shear loading in the x and y directions
Integrating eqn (94) gives the potentials as

Fip.¢,z) = S e

= ——— A Y 1] -’ -\
T _mz)m/|:(SA+SA)ll"(p._,)+r(p,_,’);

Zm,- 2 (—1)"+l(m,.+l)}'rr Y & y
-y " UNSA+SM(p,z;+h,) |, j=1.2,
(ml+])(ﬂlyl_”l‘2)n=1 m, ( ) (p ' ) !
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iay,
8nAdy,

Fi(p,¢.2) = (SA—SA){T(p.25)+T(p, %)}, (103)

with I'(p, z) defined in eqn (43). Using the derivatives in Appendix B provides the elastic
field as

¢ _ —4a 2 (_l)j‘l'r'j
4A444(m —my) = m;

u [5[1;(0, 0:0)+7/(0.0:0)]

2m,

+S¢e??[G(0,0:0)+G/0,0;0))] — ————
GH0.0:00+ 0. 0:01= G =

(_l)n+](mn+ 1)}"n

{81,(0,0:0)+Se¢2°G,,(0.0; 0)}}

n=1 m,
ay P
+4/;3 |:S[]'3(0,0:0)+1’3'(0,O;O)]—Se'z"’[G;(O.0;0)+G'3’(O,0;0)]], (104)
44
‘=*a; ] : 1yt 4 . q .
W 2A44(m1—mz)[S"COS¢+S"Sln¢] /_;( 1) [1,(0,1,0)—!—1’,(0,1,0)
2rnl 2 (_1)”+1(mn+1)ﬂ/‘n .
B (mj+1)(}‘l_)’2)n=l m, 1”1(0‘1’0) ’ (105)
aAg . : (_l)/+l[7’/2_(l+mf)}’§]
0, = ——F————[S.cos¢d+S,sin
: Agq(my —m,) [ ¢ ’ ¢) /;I 7,
2m; 2 (=) m, + 1)y,
0.1 1)+ 10,1 1) — J ' 1,0,1;1) |, (106
X["( HD+H0.1D (m;+ D1 —72) 05 m, A0 13D ], (106)
] 2 _1 j+1 +1 Ay
a:__z—i”Ta_Tw)[S_‘.cos¢+S}smd>] Zl( y'om, )"[I;(0,1;1)+[;f(0,1;1)
2m; 2 (= D" (m,+ Dy, ,
_(m/'+1)('}'1—}’2),1:| m, 1"1(0’1’1) ) (107)
_ aA(,s 2 (“l)/#l‘}'j o[y . 2 . S A3 ’ .
% = iy | SO LD+ 10 1 D)+ S A0, 1:1)
2m, 2 (1Y ),
H)0,1;D)]— / "iser, (0,1;1
+ J( )] (ml+1)(71 -)‘1’2)’1:1 ”1,, lse /( )
+S_e’3“’H,,,(O.1;l)}}—%[Se"”[[}(O,l;1)+I’3’(0§1;l)]~S_e"’¢[H§(O,l;l)
r3
+H7(0.1:1)]], (108)
a 2 (_1)/+l(l+m1) / . . . G L2017 .
= m S[2(0,0: 1)+ /(0,0 1)] + Se2*[G7(0.0; 1)
2m, 2 (=1 1y
"r‘G}’(0,0,l)]" m/ ( ) (mn+ )/n {SI,,,(0,0,])

(m,—\\- Dy —7v2) .5 m,
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+S5e%°G,,(0.0: 1)}} - Z[S[IQ(0,0: 1)+ 75(0,0: 1)} — Se??[G5(0.0: 1)

+G5(0,0; D). (109)

7.3. Ring shear loading in the p and ¢ directions
Integrating eqn (94) gives the potentials as

—1 Hl}',‘ 3 1 . I ,
Elp,¢.2) = (=17 e S,:H:_ + '}{./(p.:;)+_f(p.:;)}
cp o p

4nAd q(m, —my)m;

2}’71/ - (7 1)”+](’nn+ 1)7.'1 C .
(m;+ 1) *‘;‘z)”; m, (3P f(p hh =1

ays

Fip.¢.2) = T and,, "

S. {(p }Lf(ﬂ R RNV AN (110)

where eqn (C10) can be used to evaluate the above in terms of 7(1,0: —1) and a dis-
continuous term. Using the differential relations in Appendix C allows the elastic field to
be found as

‘ — oy ] )’H FOL0)+71.1:0)
“ 2A44(ml—m) S¢ ; i
2 21yt 1)~
-y e )"’1,-,1<1.1;0)}
(n1/+l)(/l_>'l)r1:1 m,
ia}'3 S e[¢*‘]/(] 10)+[w(l 10)] (111)
2‘444 [ (£t b KA I IR
w= _"“’—H—S 22:(—1)/'1 I(1,0;0)+71(1,0;0)
2A44(m1—n13) ‘]/:1 ae AR
2”’/ 2 ( - 1)'1+ : (mn + 1):";1
- 1,(1,0:0) |, 112
(n7l+l)(}‘l _7‘2)n:1 n"n ! ( ) ( )
adgee 2 (*1)'“[7;2_(1‘*‘"”/)}'%] .
= S I(1.0;H+7,0:1
7 Aga(my —mz) " /gﬁ vim; i« )+ 1A )
2’”/’ S ( - ” ! (mn + ])/n
- *"'7%*] 1,0:1 113
Do) m, (10D L (113)
1)/+|(m+l)”
— /. : "’ ) ;1
2(ml m-) /,Z‘ m, LL0: D+ 71102 1)
2m, 2 (—1)””(m,,+1),,, :|
_— N - A(1,0:1) (114)
(m;+1)(7, *3‘:)”; m, Ll

aAe, oi2¢ _1)/+l),
= —_——— (1.0:DH+G(1,0;1
o A44(ml~m) S,e Z Gi(1.0:1)+G7(1.0:1)
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2m, : - I " + 1 n
— 7,.,.4—.., (‘ ) (’n ),L, Gm(l 0 [)
(n11+])()‘1_}‘2)r1=1 m,

+ 25, e2[GH(1,0: ) +G5(1.0: 1)), (115)

R

_ a o0 Z (—1)’“(l+m)
2(m, —m>) Sye

[1’,-(1. LoD+ 1)

!

2m, 2 (=1 on,+ 1),
I,(1.1:1
(m + D — Z i, 15D

~US e L ) EALD) (116)
The corresponding results for ring loading buried in an isotropic half space can be
found in Appendix I for the three cases of ring loading considered above.

8. DISCUSSION

This analysis has derived the elastic fields caused by concentrated ring loadings in a
half space or full space. Solutions for isotropic materials have been previously published
but most of the present solutions for transversely isotropic materials appear to be new. The
exceptions are the axisymmetric torsion case which has been considered by Erguvan (1987,
1988) and the axisymmetric ring loadings on the surface of a half space analyzed by
Hasegawa and Watanabe (1995). The method of solution used here is a direct integration
of the derivatives of the potential functions around the circumference of a circle. These
integrals were evaluated in terms of complete elliptic integrals. In some instances the
derivatives of the potentials were discontinuous functions, an interesting feature not seen
previously. However it was shown that these discontinuous functions lead to a continuous
elastic field. The continuous part of these derivatives was written in terms of the functions
I(pu. v:2), first introduced by Eason er al. (1955), to represent an infinite integral containing
products of Bessel functions. They evaluated it in terms of complete elliptic integrals for
integer u, v and ~ when the integral was convergent. In the present paper, the notation
I(p. v 2) s used to represent combinations of complete elliptic integrals for the entire body,
whether the infinite integral containing products of Bessel functions converges or not.

On a related topic, many of the expressions for the elastic fields derived in this paper
contain powers of the radial coordinate p in the denominators. However it can be shown
that the numerators also vanish leading to a finite result. Perhaps the easiest way to obtain
these limits is to use the results in Appendix A of Hanson and Puja (1996b). There the
leading terms of the expansions for the functions /(u, v: £) were given for p — 0. These can
be used to find the elastic fields for the various loading cases considered in this paper along
the - axis where p = 0. Care must be taken to remember that the expressions in Appendix
A of Hanson and Puja (1996b) are only valid for - > 0 since they were obtained by
expanding the Bessel function from the integral representation in eqn (D1). For = < 0. the
integral in equation (D1) is meaningless and the expansions in Appendix A of Hanson and
Puja (1996b) are no longer valid for the functions /(x. v:4) which contain the complete
elliptic integral of the third kind.

Another interesting feature concerns the symmetry in some of the integrals. For
example, consider equation (C8) which is repeated below

chos(d)n)[:,ln [Ri+:]—R]dp, =2nl(1.1:=2)
{

y

{0 >0 ;(a _p? )[1«sgn(p—a)].:<o}. (117)
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The integrand is symmetric in the variables p and a whereas the right hand side does not
appear to be. In order to see what happens it is first noted that the terms /,{(a), /»(a) and
thus k; remain unaltered if one interchanges p and a. Therefore F(k;) and E(k,) are unaffec-
ted. However, I1(n, k) is transformed to I1(p,; k;) where p,; is given as p,, = [/, (a)}/a".
Now a modified version of the transformation formula from Hanson and Puja (1996b)
[eqn (26) of that paper] is needed

nl(a)

I(p, k,/’) = 2[:/2]1 2

+F(k)—T(n,.k,). (118)

The modifications consist of adding the j subscript and the z in the denominator of the first
term on the right side has been replaced with [z;]' *. This change now makes the above
equation valid for complex z; and the square root must be taken as in eqn (21) above. The
above change is identical to the modification made to eqn (24) resulting in eqn (28). For
=>0,[z7]'7 =z, and it is easy to show that /(1,1 ; —2) is symmetric in p and a. For z < 0,
[z7]'* = —z; and now the combination of complete elliptic integrals represented by the
notation (1, 1; —2) is not symmetric in p and «. However the extra discontinuous term in
brackets in eqn (117) (with p and a now reversed) will make up the difference and the
resulting overall expression can be shown symmetric.

The final topic of discussion concerns the discontinuities displayed by some of the
functions derived here. For a clear illustration, consider again eqns (A2) and (A8) which
provide the result

¢ 7 p—acos ¢, 2n 4z,
— z) = T "7 4d, = — I(n,. k
ép vip.z) JU Ri(R,+:z) %o p o phia)y /)

&

+{0,:>O;— p 1—sgn(p~a)],z<0}. (119)

The integrand is a continuous function for z > 0 and also as = passes into the region z < 0
for either p > a or p < a. Therefore, this integral should produce a function with the same
continuous properties. It is clear that the right hand side is continuous for z > 0. Now
consider what happens as z— 0 for p > a. Equation (All) provides that Lim._,
zIl(n;, k;) = 0 so the right hand side above gives the value 27/p as z tends to zero from
either positive or negative values and there is continuity. As z — 0 for p < a, one must
consider = positive or z negative. For = positive, eqn (A 11) provides Lim__, - [1(n, k;) = na/2
and the right hand side above simplifies to zero (note that /(a) becomes a in this limit).
For z negative, eqn (A11) provides Lim__, zI1(n,. k,) = —na/2 and the first two terms on
the right hand side above become 47/p. However the term in brackets is now —4x/p and
the total right hand side is zero. Hence the right hand side above is a continuous function
in the region z > 0 and into the region = < 0 for both p <« and p > a. The only dis-
continuity on the right hand side above is for - < 0 as one passes from p<ato p > a
where a jump of 4r/p occurs.

For a ring normal loading in a full space. the above results leads to the displacement
in eqn (63) as

‘—ﬂN: R 4z,
Y St = =TT T e R (120)

since the discontinuous term in brackets in eqn (119) cancelled as it was independent of ;.
Now the term in brackets in eqn (120) has a discontinuity across the = = 0 plane for p < a.
The quantity zIl(n,.k;) jumps from na/2 for = slightly positive to —na/2 for z slightly
negative. However this discontinuity is also independent of j and will cancel out in the
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summation process. In fact, eqn (120) provides u° = 0 when z = 0 for all p. This is also
correct physically since = = 0 is a plane of anti-symmetry in this instance.

Acknowledgement—I1t is gratefully acknowledged that support during the course of this research was received
from the National Science Foundation under grant No. MSS-9210531. The authors would also like to thank one
of the reviewers for the considerable time and effort expended on carefully reviewing this paper and his many
helpful comments.

REFERENCES

Byrd, P. F. and Friedman, M. D. (1971) Handbook of Elliptic Integrals for Engineers and Scientists, Springer-
Verlag, Berlin.

Eason, G., Noble, B. and Sneddon, 1. N. (1935) On certain integrals of Lipschitz—Hankel type involving products
of Bessel functions. Philosophical Transactions of the Royal Society of London A247, 529-551.

Elliot, H. A. (1948) Three-dimensional stress distributions in hexagonal aeolotropic crystals. Proceedings of the
Cambridge Philosophical Society 44, 522-533.

Erdelyi, A. (1953) Higher Transcendental Functions Vol. 2. p. 48. McGraw Hill, Maidenhead. U.K.

Erdelyi, A. (1954a) Tables of Integral Transforms Vol. 1, p. 184. McGraw Hill, Maidenhead. U.K.

Erdelyi, A. (1954b) Tables of Integral Transforms Vol. 2. p. 50. McGraw Hill, Maidenhead, U.K.

Erguvan, M. E. (1987) A fundamental solution for transversely isotropic and nonhomogeneous media. /nrer-
national Journal of Engineering Science 25, 117-122.

Erguvan, M. E. (1988) An axisymmetric fundamental solution and the Reissner—-Sagoct problem for an internally
loaded non-homogeneous transversely isotropic half space. fnternational Journal of Engineering Science 26, 77—
84.

Fabrikant, V. I. (1970) Effect of concentrated force on a transversely isotropic elastic body. fzt. VUZ o,
Mashinostroenie, 9-12.

Fabrikant. V. L. (1989) Applications of Potential Theory in Mechanics : a selection of nexw results. Kluwer Academic
Publishers, The Netherlands.

Fabrikant. V. 1. (1991) Mixed Boundary Value Problems of Potential Theory and their Applications in Engineering.
Kluwer Academic Publishers, The Netherlands. pp. 355- 356.

Gradshteyn, I. S. and Ryzhik, I. M. (1980) Tuble of Integrals. Series. and Products. Academic Press. pp. 707, 904
909.

Hanson, M. T. and Puja, I. W. (1996a) Love's circular patch problem revisited: closed form solutions for
transverse isotropy and shear loading. Quarterly Applied Mathematics 54-2, 359-384.

Hanson, M. T. and Puja, [. W. (1996b) The evaluation of certain infinite integrals involving products of Bessel
functions: a correlation of formula. Quarterly Applied Mathematics in press.

Hasegawa, H. and Watanabe. K. (1995) Green's functions for axisymmetric surface force problems of an elastic
half space with transverse isotropy. Japan Society of Mechanical Engineers 95-1, 438-439.

Hasegawa. H. and Ariyoshi. S. (1995) A fundamental solution for axisymmetric problems of a transversely
isotropic elastic solid. Japan Society of Mechanical Engineers 95-1, 313-314.

Hasegawa, H., Lee. V. and Mura, T. (1992a) Green's functions for axisymmetric problems of dissimilar elastic
solids. ASME Journal of Applied Mechanics 59, 312-320.

Hasegawa. H., Lee. V. and Mura, T. (1992b) The stress fields caused by a circular cylindrical inclusion. ASME
Journal of Applied Mechanics 59, S107-S114.

Hasegawa, H., Lee. V. and Mura, T. (1993) Hollow circular cvlindrical inclusion at the surface of a half space.
ASME Journal of Applied Mechanics 60, 33—40.

Johnson, K. L. (1985) Contact Mechanics. Cambridge University Press. Cambndge, U.K.

Jones, R. M. (1975) Mechanics of Composite Materials. Hemisphere Publishing Corp., New York. pp. 41-45.

Kermanidis, T. (1975) A numerical solution for axially symmetric elasticity problems. International Journal of
Solids and Structures 11, 493--500.

Lekhnitskii, S. G. (1963) Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day. Inc.. pp. 347-352.

Love, A. E. H.(1927) A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge.
U.K.

Love, A. E. H. (1929) The stress produced in a semi-infinite solid by pressure on part of the boundary. Philosophical
Transactions of the Royal Society London A228, 377-420.

Mindlin. R. D. (1936) Force at a point in the interior of a semi-infinite solid. Physics 7, 195-202.

Mura, T. (1982) Micromechanics of Defects in Solids. Martinus Nijhoff. The Netherlands.

Pan. Y. C. and Chou, T. W. (1976) Point force solution for an infinite transversely isotropic solid. ASME Journal
of Applied Mechanics 43, 608--612.

Pan, Y. C. and Chou, T. W. (1979) Green's function solutions for semi-infinite transversely isotropic materials.
International Journal of Engineering Science 17, 545-551.

Rongved, L. (1955) Force interior to one of two joined semi-infinite solids. In: Proceedings of the 2nd Midwestern
Conference on Solid Mechanics, pp. 1-13.

Shield. R. T. (1951) Notes on problems in hexagonal aeolotropic materials. Proceedings of the Cambridge
Philosophical Society 47, 401-409.

APPENDIX A

Here the derivatives of the potential function ¥ (p. =) are evaluated. It is defined as

Yip.z,) = J In[R,+z]d¢,. R; =p*+a” —2apcos(¢py)+=;. j=1.2.3. (AD)

0

It was discussed at the end of Section 2 that =, is always real whereas =, and = are either both real or complex
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conjugates. It was also shown that Re |z} > 0if = > 0. Re {z,} < 0if = < 0 and thus the sign of the real part of
is the same as the sign of - itself for j = 1, 2, 3.

The authors have presently not evaluated ¥ (p. =) but all necessary derivatives have been found. To start with,
the p derivative becomes

¢ o ”Z”Q—acosq‘bﬂ
—Y(p.2) = 1 RAR, =) dbg. (A2)

Before an evaluation of this integral is made, an interesting feature should be pointed out. First consider z, as a
real quantity, say -. The denominator is a continuous non-zero function in the region - > 0 and hence the integral
produces a continuous function in this region. If - < 0; then R equals the absolute value of - when p = a and
¢, = 0. Thus R+ : vanishes and the denominator is zero. Although the numerator also vanishes, it is seen below
that this causes the integral to produce a discontinuity along the semi-infinite cylinder p = @, = < 0. Now consider
the complex number z;, When p = a and ¢, = 0 then R becomes [=;]' * and two cases can happen [see eqn (21)].
IfRe {5} > 0, R+z; = 2z;and is never zero. If Re |=,} < 0. R,+ -, = 0 and the denominator again vanishes. Hence
a discontinuity will occur as in the real case. Since the sign of the real part of z, is the same as the sign of z itself,
it may be concluded that for = > 0 this integral is a continuous function and when - < 0, this integral has a
discontinuity at p = a.
The integral is now evaluated. It can be rewritten as

¢ (7 [p—acos ¢,][R,—z, M= [p—acos (27 [p—acos ¢,
Dpipozy= | TR kufw@%ﬁﬁ;J[L—fﬁﬂww (A3)
o o R[R; —= Jo IRF 5] v R[R] =]
The first integral is independent of =, and can be easily evaluated as
(% [p—acos ¢, n
b oacos bl gy, 14 sgnip @, (A9
Joo (R =5] 14
which is discontinuous at p = a. The second integral can be rewritten as
f27 [ acos 1 R L o d
J looacosdl gy Ly W)y o T [ LT (AS)
o RJR; -] “p =P Jo R Jo RJR; —:})

and it is noted that /, and /; were evaluated by Hanson and Puja (1996a) when =, was real. For complex z,. eqn
(22) can be applied to these previous results to show

[:LF(A f) P ]'l(p zvkﬁ) podan_ (A6)
T (Lkpa) \T+KE, ’ (0 +k ) a)a+p)? 1+4, (a+p)?

which is identical in form to the real case. Combining these results together provides

]

(
—ip.z) =

n 5, E =)
cp p

[1+sgnip—a)]— 5;/;+ 5 I (A7)

This form is not very convenient since the integral should be a continuous function for = > 0. The first term
1s discontinuous at p = « for all =. As shown in eqn (27) of Section 4, the last term is also discontinuous at p = a
and the two discontinuities cancel for = > 0 whereas they combine for = < 0. A better form can be obtained using
the transformation formulas (eqns (23) and (28) of Section 4) for the complete elliptic integrals leading to

C vy = o ey Jo5 00— 0 - sentp—a).z < 0!
o 0.2y = — — H, K, <U.z L= —Sgni{p —ajj. - .
A po phia) T P gnis f
( 2n
=2nl(0.1:0)+<0.2>0: — — [l -sgn(p—a)].- < 0}. (A8)
[ 4 )

The functions /;(u. v: /) are defined in Appendix D. This form has an advantage since I1(n,. k) is a continuous

function in both the upper and lower half spaces and hence the discontinuity along the semi-infinite cylinder

p = a, - < 0isisolated to within the term in brackets above. However, it is also noted that the term in brackets is

discontinuous across the = = 0 plane when p < a but (¢/épW(p. z,) should be continuous which it was in eqn (A7).
To understand this it is first noted that

I,i}gl/.,(a) = min{a. p). Lir(p (@) = max(a. p), (A9)

where min is the minimum of the two values and max is the maximum. Thus, k, and n, become
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p<a., ki=—. p>a. n=1. p<ua: no=--. p>a (A10)

Thusasz - 0and p < a, n,— | and [1(n,. k;) — . The product z I1(n,. k;) is bounded and egn (25) along with the
identity =} p* = [[3(a)—p°llp~ — I7,(a)] or eqn (28) can be used to show

]Tlr(‘,q :/H(”J' /‘/) = _lﬂ

‘]Il

p<a: Lle s Mn. k)y=0, p>a (All)

Using this result and eqn (21) it is easily seen that eqn (AS8) is continuous across the = = 0 plane and in fact
vanishes for - = 0. p < « which is consistent with eqns (A3) and {A4).
Now consider the -, derivatives of ¥/(p. z;). The first one can be written as

‘ [ déy 4 ;
—Yp.z)=| —=1L= —F(k,)=2nl,0.0:0). (A12
=Yz JU R =T Tk = 2l ) (A12)
Applying a second z; derivative leads to
o dg, 4, 20k,
—Ylp.o) = -2, [ oo _ — 7E<15T)
az; Jo R} Bayd —k) (1 —kp* \TTR

- 2
- —[FM;)— —

. E(k,)}: —211,(0.0:1). (A13)
@) (1—k}) :

'

The remaining derivatives needed can be found as follows. First differentiate eqn (A12) with respect to p to
obtain

P2 : é [ 4
é (—,'/’(p T e ) F(k) }
=——0 - [[li(a%p:]F(k,)——[’-;+a'—f’)kll~:(k,)]= —2nl(01:1). (A14)
pla(a){l —k7) (1—Fk3)

where the differentiation was performed using the results in Hanson and Puja (1996b). Finally, since ¢(p.z,) is a
harmonic function (apart from a delta function which is presently neglected)

I (1e )
Ylp.z) =< — - — Y(p.z))
ép’ b 1 pep F‘:ff g
n 4z

) -
- T "-f[F(k,,>~- '—:—1E(k,):|+ fi“; [in, k)
p* o Bal —k;) 1—4; pily@)

b2
oss 0.7 —sgn(p—a)].z < ol
] p° |

| L
= 2n%1,(0.0; 1)— ;)[,(0. 1 ;0)}+{0.: >0;

2n 1
f[lfsgn(pfa)].:<0}. (A15)
P

which is also discontinuous. Dirac delta functions will not be presently included but should be included for
integrations of the present solutions.
Using the above derivatives. the following differential operators are easily obtained

Agip.z;) = — —¥(p.2) = 2nd(0.0:1). (A16)

A s

ip: P cp

Al(p.z) = e’”’{ }(I/(p.:,) = e’“’l:ZHG,(0.0; 1)+ {0‘: > 0:4—7[] —sgn(p—a)l,z < OH (A17)
e
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APPENDIX B

Here the derivatives of the potential function [(p. =) are evaluated. It is defined in eqn (43) as

nra LRE

Cp.s) = | [5in[R,+2]—R]dd, = 2. =) —D(p. ). d>(p._-,.)=J R, dé,. (B1)
0

i

with R, defined in eqn (A1). As a starting point the p derivative of ®(p. =,) will be found. It is given as

¢ I [p—acos 1 (@ ~z7—p*) - ‘
o(p.z,) :J tooacosdol gy, o Ly 0Dy g [ R,déb,. (B2)
p 0 R, 2p 2p Do
and [, was evaluated in Appendix A. The integral /, can be evaluated as
20 k)
I, = 4(1 +k ) a)E . B3
L= 40k @) (Hk‘) (B3)
Using these results and the transformation formulae in eqn (23) leads to
3 4/, 4[5 .(a) — p*
oy = Mt gy M@ (B4)
cp P pl(a)
The p derivative of ['(p. z;) can now be written as
& ¢ ¢
—lp.z,) =2+ ) == .z
p (p.2) i Yip. ) 7 ®(p. )
2nz, 1
= =2n/(0.1; —1)+{0.2>0: ~ T[l —sgn(p—a).z < Oj. (B5S)

where the discontinuity arises from the radial derivative of ¥(p, 2 ).
Some additional derivatives can be found as follows. Noting the differential relations

( ( ( - 3
—lp.z)=vp.2). —T(p.2) = —ylp.2) ‘ -[(p.z)) = :—_d/(p.:,).
‘z, ipiz; ip P cz,
-1 (53 (—:1 ('*2
ooz == ¥p.2). Cip.z) =—y(p.z).  (BO)
épizy Cpes; ép” ¢z, cp®
it is easy to see that
e 2n
e [(p.z))=2nl(0.1:0)+ {(J,: >0 - T’[] —sgn(p—a)l.z- < 0}, (B7)
C F(pz) = —2nL(0.1:1). (B8)
cpéz?
= 1 ) 2n
Ip.z,) =2r¢0,00.0: 1) — = 1,(0.1:0)p +0.2> 0;— [l —sgn{p—)].2 < 0. (B9)
ipT ¢z P ,( P

Noting that I'(p. z,) is harmonic leads to

L.z :{vlf%— sy = —2n (1,(0,0;0)711,(0.1;—1)}
pep oot | p

ip? i) { )
2nz, 1
+40.2>0: — [lfsgn(pfa)].:<()‘x (B10)
L P )

The final derivatives that will be evaluated are the operators Al'(p.z). AL (p. z;). AAl(p.z). AT (p,z;) and
A°[(p, z;). where A and A are defined in eqn (3). The operators Al'(p. z;). AT (p.z;) and AAT (p, z,) are
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~2 -
o2 Y

¢
—lp.z)=— A Wles).

(= =i

é

Al(p.z) = e“"’(")l"(p.:,), Al(p.z;) = —

o P

AAl(p.z) = —e" ——-T(p.z)) = —e* ——
cp oz Cpez,

wip.z))

and they can be easily obtained from the above results and use of Appendix A. For A'T(p. z)

a2
£

PR

A'T(p.z) = e’”{
e

e .
- = f—}[‘(/), )= e“*“{fln(i,((], 0:0)
pip :
4nz
+ {0,: >0: 72 1 —sgnip—a)). = < (]H
5

and the operator A'T (p. ;) can be written as

N (G 3¢ (47
A'T(p.z)) = e"“"{if ol + — f—}l‘(pqi = {
fpt Papt p2 0P P

. l6n:z, |
=™ 20, 1; 1)+ 0.2 > 0: — ”’f['*Sgn(/’“”)]-:<O§ :
” ’

APPENDIX C
The potential functions Q(p. ¢.z,) and Q(p. ¢. ;) are defined in eqn (51) as

Qp.d.z) = | e[z In[R,+z]—R]dbn.

o

R: = p~+ua* —2pacosid —,) + 7.

~

e[z In[R, 4]~ R]ddy.

Jo

Qp.¢.z) =

1407

(B11)

(B13)

(€1

and it is noted in this case that the integrals are not independent of ¢. They cannot be considered as complex
conjugate either since =, can be a complex number. It is easy to show that these integrals can be transformed to

-

Qp.p.z;) =€ [“ cos(ga)z,In[R,+ 2] — R,] d¢,.

Jo

R} = p" +a = 2pacos(p,) + 7.

Qp.dp.z)=¢ ¥ [ cos(¢o)[z;In[R,+2] = R]ds.

Jo

To evaluate this integral it is integrated by parts using cos ¢, d¢, = d(sin ¢,) leading to

7 M sin® ¢. (27 sin” ¢u
[{ cos(¢)[z; In[R,+2,] — R]d¢, = —par, ), ®iE +,[:t‘)d(p“+puh}” R dé,.
The first integral can be rewritten as
[ sin® g 7 sin” ¢u[R; 2]
—paz ——————d¢ = —paz, | ——L—"Ld¢,
P /J“ R(R,+:) N f I R,[Rffz,:] P
[ sin® ¢, L7 osint g,
= —paz, T d): depy +paz; [ 7':‘Ld¢n~

Jo [R;—Z]] Jo Ri[R; —Z7]

Using the substitution

(C3)

(C4)
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RSP @R ) @)

sin® ¢y = (Cs)
4a°p? 2a°p? da”p*
Trosint g, ns L . =7
—paz, —————d¢y = —[—(a +p )+ —p)sgn(a—p)]— —1
| R(R 42 Po Zpa[ f g 1) 4ap |
P B PR L P 0
o [2a7 +2p7 + 55 J 7-,(a P I (6)

4ap : 4ap

where /, was evaluated in Appendix B and /.. /, were evaluated in Appendix A. The Second integral in eqn (C3)
was evaluated in Appendix B of Hanson and Puja (1996a) and their result is

sint ¢, a1+ k7] a1 —4;71°
= L g .. C7
pe '[\ R, dou 6ap ‘ bup = €7
Combining these results and using the transformation formulas in eqns (23) and (28) leads to
Mz
cos(¢y)=; In[R, +2}—R]dg, = 2nl (1. 1: =2)
Jo
+<}0._~>o; z%(azfp:)[lfsgn(pfa)].: <0}. (C8)
Substituting this result into eqn (C2) provides tinally
Qip.¢.z) =e“fip.z). Qp.¢.2,) =¢ “fp.z,).
flp.z) = [27{[,(1. l: =)+ ){0.: > ():%;i(u: —p )1 —sgn(p—a)].z < 0}] (C9)
¢
Some derivatives of f(p. z,} needed for the elastic field can be found as
[ 1
—+ = flp.z) =2rl(1.0: = 1)
1(‘;) P} !
2n:z
+{0.:>0;A—l/[lfsgn(p~a)].:<(]} (C10)
[¢
(e 17, ( 2n
9+ o flp.z) = = 2rl(1.0:0) + {().: >0:— —[l—sgn(p—a)].z <0, (C11)
oz lép o op) a
il (L R )
{f—&-*}/(p.:,) =2nl,(1,0: 1), (C12)
i ep P
¢,
A A—+7§f(p.:,) = —2me[,(1.1:0). (C13)
cp o p)
¢ (c i) N
A= {T + 7}/(;).:,) =2ne” (1. 1:1), (C14)
fzlép o p
el .
/\Jf + l/'(p.:,) = 2ne""G1,0:1). (C15)
oo ]
APPENDIX D
The function /(g. v 2) was introduced by Eason et al. (1955) as the following integral
Iuv:) = J Zaad(pire T de (D1)
o

Integrals of this type have been evaluated in Erdelyi (1953, 1954a. 1954b) in terms of hypergeometric series and a
Legendre function. Eason er a/. (1955) evaluated this integral for various integer values of u. v and / in terms of
the complete elliptic integrals F(2\/k "1 + k). E(2,; k/1 +k) and Heuman’s Lambda function Ay(«. §) which can
be given in terms of the complete elliptic integral of the third kind IT[p.(2/k/1 + k)] where k is defined in eqn (14)
and p in eqn (24). The form of the evaluation they provided is inconvenient since it requires different expressions
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inside or outside the cylinder p = « although the function in eqn (D1) is continuous for any = > 0. Recently.
Hanson and Puja (1996b) re-evaluated this class of integrals in terms of F(k), E(k) and I1(n. k) where n is also
defined in eqn (14). This new form of the evaluations provide a single expression which is continuous everywhere
in the half space = > 0. The results below are taken from this reference. The functions /(i v; ) are obtained from
I{p, v 2) by substituting = — =, in these formulae. /(a) — /,,(a) and /,(a) — I, (a). Thus I(u. v: /) are given in terms
of F(k;). E(k)) and I1(n,. k).

A final comment on this matter is required. The integral above is convergent for = > 0 if - is a real quantity.
For transversely isotropic materials = is replaced by -, which may be a complex quantity. Hence the integral is
convergent if Re {z,} > 0. As discussed at the end of Section 2, the sign of Re {z;} is the same as the sign of : itself.
Thus for full space problems or ring loads buried in a half space. the above integral will not be convergent in some
region. This is of no consequence however since the present analysis evaluates the derivatives of the potential
functions by direct integration in terms of a combination of elliptic integrals. These evaluations are valid for any
complex z; and the notation /,(u,v; ) is merely introduced as a shorthand for representing this combination of
elliptic integrals. Of course, when Re {=;} > 0. this combination of elliptic integrals will be equal to the integral in
eqn (D1) above.

ca  L{a)[2p" +2a" )

Yy = . — e o - =73 .
I(1.1;:-2) % + 3nap E(k)
/ H@)[dlia) +=7 T 200 ——2:13]}3:2/)" e -p] 5
3napl,(a) Fik naplq( ) Mn. k). (D2)
[(1.0;-1) = —[p* = K (@]F(k) — = T{n. k)], (D3)
2 -nls{a) .
H0,1: 1) = —+— |:7 -*-{-/ Ha)EWR) ~ (13 (@) —p |F(k +:‘n(n./<):|. (D4)
np/ (a)
_1»
M- =5y (H)E(A)
2p
B P S Gttt YUY (D5)
nupl {a) napls(a)
2
1(0.0:0) = —  F(k). (Do)
nl(a)
2-
0:0) = — _ D7
11.0:0) (@) [Fik) —T(n. k). (D7)
| 2=
1(0.1:0) = ,[] - — ﬂ(iz.k)J. (DY)
o nl ()
2/
H1.1:0) = “”[F<A)~ E(k)]. (D9)
2z 2
1(0.0: 1) = f~—~{*F(kj+ - E(k)} (D10)
ali @) (1 —k) 1 —k°
2[i5(a) —a® Az~ p —
r0iny = AE@=d] g 2E0 ) g (DI1)
ralX(a)(1 —k7) nal3a)y(1 —k°)*
2
0.1 = — — = [[ (@) - pF ) — L]E(k)} (D12)
npli(ay(1—k%) 1-k7)
2 1+k-
(.1 n = — 7[—F(/{)+—'7*E(k):l. (DI13)
napls(a)(l —k-) 1- k-
a1 - k) =527 =322k EN / l—A
10.0:2) = 2@U Y DX R gy, vl L (D14)
rl3(a)(1 =k’ al (a1 f/\‘)
__l . 7‘; W
H1.0:2) = 13 ((l)+7/ (a) — 5a* a‘k® RO
mal i {a)(] —
I8+ A7) = K () — 12 4 (o)
. Sa (1+ k" )=k 1i() ;(a) 415(a)| Ed). DI3)

rnal>(a)y() —k°)*
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2:4053(@) + T (@) —5p° —3p k)

10.1:2) = - “F(k)
mplil@y (1 —k7)*
Q2 2y 10— 2 a) — 148 ()
+2_L8p (1+4k7) ,I‘ l.(J)V 13(a)— 1415 (a)} E(K). (D16)
npli(ay(l —k*y*
f_ 2 kN s
1(1.1;2):—»2‘ Bl k)7 v s +2k “F(k)

rapli(a)(l —k*)’

2 3 2 2 _2__1 1 2 ka
_ 13(a)(1+ k7 )(1 ‘/\ ) ‘(l+ 4k + *)E(k) (D17)
rapli(a)(1—k°)*

2:0(15+9K%) (@)1 —k°) — =7 [31 +82k° + 15k°)}

10,0:3) = : F(k)
ali{ay(1 —k*)°
4=12(1 k)@ k) =~ [23 48257 +234]]
Az 1200 +k )L(q)(l» k=) [23+82k° + ]’E(k). (DI8)
(@) (1 —k*)®
24 2B
10.1:3) = — = CF(k) - - E(k).
mpli(a)(l —k3)* npli(ay(l —k*)°
A= ayl =k B+ 75 (@) - 5p7 = 3pk?)
+ 2= 3@ 3+ T4k + 51 + o7 (31 + 82k +15k™)).
B =@y (1 k) [=(a)— 1415 (a) +8p° —8p k™ —k I3 ()]
+23[303(a) + 13 (@) (125 + 125k 4 3k%) — 2p3 (23 + 8247 + 23kY)]. (D19)
2C 2D
11.0:3) = — — F(k) - — - —E(k).
nali(ay(1 —k*)* nal Hay(1—k*)*
C =131 =k [3a) + 75 (@) — Sa” -~ 3a7 k)
+ 2 [ B@ 3+ 74k + 516 + o’ (31 + 8247 + 15k%)).
D = I3(a)(1 =k [—15(a) — 1415 (a) + 8a* + 8 k* — k7 [} (a)]
+ 22313 (a) + 1T (@ (125 + 125k +3k%) — 2a° (234 82k 4+ 23k™)). (D20)

The functions Giu.v:2) and H(u, v;2) are given as the following combinations of I(u,v: 4)

5
Gu.viz) = I vii)— _—)l(p. vlia—1). (D21)
£
. .4 . 8 .
H{p. vy = Hu.v:2)+ ;I(;L\" Vo= ——Iuvisi=2). (D22)
p
Here the special relations G(u.0:4) = —f(g.2:/7) and H(u.1:7) = — (1.3 /) can also be used for some of the

functions needed in the elastic fields derived presently. In this regard. some additional results from Hanson and
Puja (1996b) are

5
10.2:0) = ——-—[—zals(a) + 215 (Y E(k) 4 [p° —2/3(a)]F (k) + 22" T, k)] (D23)
np’ly(a)

2 2= 2 4:

10.2:y=—+ —— [F(k), ,*,,E(]\-)}, - - T{n. k). (D24)
p? nlia)(1—k7) 1- 47 nptla(a)
2UE@RE@ — 31— k)~ p (543K
10,22 HB@RE@ 370 K =20 543K

et ) (1 — k)

. A@)2p —a =270 fkf): —dp (1 +k7)!
mpTli(anl — &%)

E(k), (D25)
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2[2/3a) —i(a) — p°] N 2Ap7 (= +p7 —a’) =20 ) LH(@)7]

10.2:1) = F(k) : E(k), (D26)
nap*l (@)1 —k%) rap*lia)(1 —k2)?
21203 kN a5 ) — 32 0
J(1.2:2) = ZRE@U =k TpTk 7 = St = 3@k
rap 13 (a) (1 —k*)*
2-42 2 (a) — 617 2Nk 2 3 o
| 220 R ) 61 @)+ @R ][k 1471 -

nap i (a)y(l —k*)?

For the functions H{u, 1; ), the eqn (D22) must be used since the functions /(x, 3 ; 2} have not been evaluated by
the authors. Similarly. eqn (D21) must be used for G(u.0: 3) since /(. 2;3) have likewise not been evaluated.

APPENDIX E

The potential functions for a buried load in a transversely isotropic half space have been given by Shield
(1951), Fabrikant (1970) and Pan and Chow (1979). The results from Fabrikant (1970) are re-derived here for
convenience.

Point normal force

To start with, two point forces in a full space are used. One at the point (p, ¢, #) in the positive = direction
with a mangitude P and one at (p,. ¢o. —h) in the negative = direction. also with magnitude P. The potentials for
these two loads can be written directly from eqn (60) as

(—1y'p

Fip.¢.zipo-o) = Wﬁs In[R;=z1—In{R/+=10). j= L2, Fup.¢.2ipa.¢y) = 0.
S=cz—h = i =z,—h. "=cz+h o= i =z,+h. h = l
) i
R = p* 4 pi —2ppycos(d—po)+27°. R = p>+pi—2ppycos(d—y) +277. (ED)
The plane = = 0 is then one of symmetry on which the shear stress . is automatically zero. There exists a normal

stress which is denoted as ¢’. which can be found from eqn (7) as

P S J
0L =5—— =0 m) - o (E2)
-n(m\ *m:) ] (,D' +PG ” ZPPO COS(¢ ,¢())+/’7).~ 2

This normal traction must be removed. To do so. the following potentials are introduced

. (—=1y'y, ‘
Filp.¢p.2)=—"Fp.¢p.z). j=1.2. Fp.¢.z2)=0. E3
A ¢.2) 1) (P2 (p.9.2) (E3)
This form automatically satisfies zero shear stress on the - = 0 plane. The function F(p. ¢, =) must be harmonic
with no singularities in the region = > 0. The function F(p. ¢. 2) is such that the normal stress on the - = 0 plane

resulting from these new potentials cancels that in eqn (E2) leading to the result

. L

Choosing the function F(p, ¢. =) based on the form in eqn (E2) leads to

P z
-y — R TLERTE e N R ) o - Mg -
Fp.9.2) 271(”“A,”:M“mimﬂzl( = m) In[[p” +pi = 2ppo cos(@— o) + (= + )] - +2+1,],
c P 2 —(z+h,
(il“(p, Py =g Y (= 1) (1 4+m,) — Erh) (E5)
Pt 2r(my —ma) A =200 [p° + pi —2ppu cos(d— dy) +(z+ )] "

[tis easy to see that F(p. ¢. z) is harmonic and non-singular in the region = > 0. Furthermore its second = derivative
satisfies eqn (E4). Substituting eqn (E3) into eqn (E3) provides

L=yt P : ; ) ) 5
Fip- 9.1 = (m,+1) 2m(m, —m=)A,,( 7‘;7:)/121( — e (R AL =12
R;, = PP+ pi—2ppy cos(d— o) + (2, + )" (E6)

Adding the potentials in eqns (E1) and (E6) leads to the result given in eqn (93).
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Point tangential force

In this case a point force with components 7, and 7, in the positive x and y directions at the point {(p,. ¢, #)
and a symmetric force at {p,, ¢,, —#) also with components 7', and 7, in the positive x and y directions are used.
The potentials for these two loads can be written directly from eqn (61) as

(=1 'y

- 8nd y(m, —my)m,

Fi(p.d.2:pa- do) (TA+TA) () +x(=)]. j= 12

i3 T . .
Fu(p.d.21pg. o) = ————(TA—=TA)[x (=) + x(=5)]. (E7)
8y,
The normal stress on the - = 0 plane of symmetry is again denoted as ¢’. and can be found as
| 2(—1y* 1+ T i
ol = EDT i m) Gx L : (E8)
An(m, —m2) 5 n,

(ﬂ: +Pﬁ —2pp, cos(¢p — ¢y) +/‘/:)I :

To remove this normal stress a second set of potentials are taken in the form of eqn (E3) where the harmonic
function F(p. ¢. ) must satisfy eqn (E4) with ¢_. as now given in eqn (E8). Such a function can be found in the
form

5 —1 =D (bemy)
Flp.¢p.2) = -- (TA+TA(z=+h,).
p-9.2) dn(m, —m) A (G —72)05 n, ' * G h)
& . —1 =Dt (L4, -
Flp.¢. oy = - TA+TA
[ (p- . An(my —m) AL G —72) 07 m, (A )
1
X - e (E9)
[0 +pi —2ppo cos(@ — do) + (= + 4,)°]"
In this case the second set of potentials become
(=, —1 (=D 4m) o
Fip.¢.2) = —— ——— - ——————(TA+TA)Y(z,+ h,),
1092 =00 o, A — ) m, ATTINKGEER)
X(E+h) = C+h)In (R, +(z,+ 0]~ R, (E10)
Adding the potentials in eqns (E7) and (E10) leads to the results in eqn (94).
APPENDIX F
The quadratic eqn (5) can be written in terms of compliance S, as
anj+bn,+¢=0. a=5,S:—Si:. h=25:(5:—5)-8 8. =57 -5% (FL)

For real solutions to exist, 5" —4ac > 0. This implies the absolute value of b satisfies || > (b* —4dac)" °. since it will
be shown below that a > 0. ¢ > 0. Thus. if b is negative two positive real roots will exist. There will be two negative
real roots if #° —4ac > 0 and » > 0. Thus the case of one real positive and one real negative root will not occur.

Some restrictions on the elastic constants will now be considered. These have been given by Jones (1975) for
an orthotropic material. For a transversely isotropic material it is noted that S.c = Sy S.o = S}, S5: = Si; and
Seo = 2(S),— S1»). The restrictions are

S11.S:.85. 8 >0, ST, —S5{,>0. S, Su:—S{:>0. (F2)

where the inequalities above ensure ¢ > 0 and ¢ > 0. The above results also imply that §;,—S), >0 and
S+ S, > 0. A final inequality which will be needed is

S S S,
Sia S S =(5, =SS S+ 5,55, -28,) > 0. (F3)
S\} Sn S::
which leads to
51185 ~528:, 287 > 0. (F4)

The case for concern is when »*—4ac¢ > 0 and b > 0 leading to two negative real roots. Assuming this to be
true leads to b > 2,/ (ac) which can be written using eqn (F1) as
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2SH(512_SII)_‘SIIS44 > 2(51151175%1)] _‘(Sﬁlfslzz)l :~ (FS)

which implies S; < 0 and the following steps

2813(S1:—S1) > 2S5, S — ST ST St
S8 =810 > (51,8 — ST0(ST, =S
S1(S) = 812) > (51183 — 8T8, = S,2)
511281 —S(S1 +512)] > 0. (F6)

Since S,, > 0. the term in brackets above must be positive also. However this term is always negative by the
restriction in eqn (F4). Hence. the above assumption leads to a contradiction and this case can never occur.
Therefore if 5> —4ac > 0 producing real roots, » must be negative. Using the result S, — S, > 0, b will always be
negative if S;; > 0. More generally, if 4> —4ac > 0 then b will be negative if S, satisfies the inequality

S Sy

S] - A~ .
e 28, —S2)

(F7)
APPENDIX G
The solutions for ring loading on an isotropic half space are given below. Here u is the shear modulus and v

is the Poisson ratio. These expressions can be obtained from Section 5 using the isotropic limits provided in
Fabrikant (1991) and Hanson and Puja (1995a).

Ring normal loading

i = — 2 2 20,1 :0)— 10,1 1)), (G1)

2p

Qu .

W= ﬁ[2(1 —)1{0,0:0)4z/(0.0: 1)]. (G2)
o, = —aQ[(1+201(0.0: 1) —=/(0,0:2)]. (G3)
6..= —aQ[I0.0:1)+:/(0.0:2)]. (G4)
. = —aQe (1 -2v)G(0.0:1)—=G(0.0;2)]. (G5)
.= —aQe“zl(0.1;2). (G6)

Ring shear loading in the x and vy directions

W = i{szz(zﬂv)no.o;m—:1(0.0; 1)l — S 12vG(0.0:0) +2G(0.0: 1)1, (G7)
W= 21“[5\ cos b+ S, sin @)[(1—2)1(0. 1:0)+=4(0. 1 1)]. (G8)

g, = —alS,cosp+ S, sin@][2(1 +v) (0, 1. 1)—=z1(0. 1 2)]. (G9)

a..= —a[S,cosp+S§,sing]={(0.1:2). (G10)

G, = — ;[Se"” 22— 0.1 )y —z1(0.1:2)} —Se 20 H(0. 1 - 1)+ zH(0. 1 :2)], (G11)
r= - %[5:21(0,0; 1) = =2(0.0:2)! —=Se¢G(0,0: 2)]. (G12)

Ring shear loading in the p and ¢ directions

W = %S,,e"”[Z(lf\')l(l.1;0)7:1(1. B l)]+%Swe"”I(l.l;O). (G13)
w= 7i—s’,[(l—2v)1(1,0:0)+:l(l.0;l)]. (G14)
6, = aS,[201+)1(1.0: 1)~ =1(1.0:2)]. (G15)

o..=aS,z{(1.0:2). (G16)
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(G17)

1414
6. = aS, e [2(1—v)G(1,0: 1) — 2G(1.0: 2)] - 2iaS, e**G(1,0: 1).
(G18)

= —aS, e’ ([ 1:1)—z/(1.1:2)]—iaS, e’ I(1.1;1)

T, =

APPENDIX H
The solutions for ring loading in an isotropic full space are given below. The solution for isotropy is obtained

by a limiting form of the transversely isotropic results in Section 6. For isotropy ;. v2. 3. my, m> — | (Fabrikant
1989) and each term in the summation becomes indeterminate. A limiting procedure is thus required. The isotropic

limits of the two term summations are given below. Here y is the shear modulus and v is the Poisson ratio
(H1)

1

= =f (=
Z(— WY*riz) = — mtm, —my).
=1y "y -4 - )
Z - _f(-",)~ ‘4(fl ) 9 =il (m, —na). (H2)
: 201 —=wyf(z)—=f"(2) )
Y=y "(I+m)fiz) = ( ‘“)(/1( )\‘;) A )(ml —mi-). (H3)
1 < -
L(—1y-'(1 -2 fl5)—=zf7(z
) Yo +nl,)f.(:/) _ (1 ;)f( )—=/( ){m,fm:). (H4)
Vi 2(1=w)
=1y (1 ; 2f(2)+zf (2
Mf(:,) = — “f(, s / ( )(m] — ). (H5)
T o 2(1—v)
2 —l“l":—l ‘”:: ] 4 -
ZL’ Y L, +m')'”*]_/(:,) ) =27 ) (m, —m,). (Hé6)
] - 4(1-v)
L T & e L R )
ZT/L,) Al (1, ~ n1a ). (H7)
S U em) ] D+
Y‘ i il - I s _ .
T my, 1z = 4(1‘ ) Sy =) (H3)
DA 4 my, 2 /)43
Z o, ftz) = - -1 (m, —ny), (H9)
(=t ddmy) o 2= fis -/()
Z o, =)=~ “ 7‘) (m, —m-). (H10)
Ring normal loading
) Qae'“ R .
8;1(1 I([). 1. (HI1)
4 Qa 3
" *[(2 4)7(0.0:0)+20,0:1)]. (H12)
8l —
o= — 2 4en0.0:1) 0.0 2)], (H13)
41—y
_ Qa
G..~= — T[’(IA\ M(0.0: 1)+ /0.0 2)}. (H14)
(H15)

,&Eﬂ;- >
02 = 43 7010.0:2),
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_ Qae™ Yy . B s )
1. = 4(l—v)[(l 20001 1) +24(0,1:2)]. (H16)

Ring shear loading in the x and y directions

y :ﬁ[sunsm(o,0;0)7:1(0,0;1): — 56 1G(0.0:0) +2G(0.0: 1)), (HI7)
= ﬁ[s, cos ¢+ S, sin ¢]=1(0.1: 1). (H18)

¢ = —4“”—4)[5. cos ¢+ S, sin pI[310. 12 1) —=1(0.1:2)]. (H19)

.= 4(]"_‘,) [S, cos ¢+ 5. sin ¢J[(1 — 20, 1: 1) — =1(0. 1:2)]. (H20)

o2 = 78(—1“_7)[5.:'“':(7—8\')1(0.1;1)A:1(o. 1:2)) = Se™ TH(0. 1: 1)+ =H(0.1:2))]. (H21)
= — E’(’lﬁ;'\-‘) [SUA(1 = )1(0.0: 1) — 1(0.0:2)] ~ =Se>*G(0.0:2)]. (H22)

Ring shear loading in the p and ¢ directions

a ar
- o W3 — 4y S0 ==K 1 25 e I1.1:0). H2
U = gy ST AL ) K1) S, 1:0) (H23)
= §n10:1 (H24)
v= 8u(l—v) " (1.0:h.
-4 1)—- 2 H2
0= 41 oy S0 —201.0:2), (H25)
a
== =20 (1.0 1y—z/(1,0:2)]. H26
o= gy S0 =200 ~21(1.0:2) (H26)
gy = ﬁs‘, €9 [(3—4v)G(1.0: 1) —=G(1.0:2)] +iaS, e G(1.0: 1). (H27)
e S R L )~ 122 S, e 1) (H28)
FTER e 21— I, 1 1)y =241, 1:2)] 3 w€YI(1, 1:1).

The displacements produced by the ring normal loading Q and the ring shear loads S, and S, are in agreement
with those derived by Kermanidis (1975). It is noted that his parameter e is p at present and his radius of loading
p is denoted here as a. The eqn (23) must also be used since his results are given in terms of F(x) and E(x) where
K= 2\/'1{/1 +k. It is noted that the expression for the radial displacement « in his eqn (2.4) contains a misprint in
the denominator for the first term on the right hand side where /((e+p)* —27) should read Vie+p)+2). In
this same equation the number 3-5 should be interpreted as 3.5 and not 1S5. Finally, before his eqn (2.8) the
intensity of loading should read 2nR,p rather than 2nR,p".

The present isotropic results for displacements also agree with Hasegawa (1992a) for the same cases of normal
loading Q and the ring shear loads S, and S,,. Since Hasegawa considers unit body forces. one must replace the
intensities Q, S, and S, with (2na) "'. For comparative purposes. one can use Section 12 of Hanson and Puja
(1996b) which discusses the relations between the Legendre functions Q_, -(x). O, »(x) and the complete elliptic
integrals F(k) and E(k). Some pertinent results needed for comparison are (where x is defined by Hasegawa and
k is defined in eqn (14))

- 2 L4+ A° 1 4k*
Q.1 :(x) =2JkF(k). Q) a(x) = —=[Flh)—EK)]. x= G . T T
Vk = =1 (1-k%)
1 s R . 1 Vg
Gi(x) = ——[(1 =kIFR) = (1 +KHEK)]. G:(v) = 'ﬂf[ZE(ka(lfk*)Hk)]- (H29)
Y% N\

APPENDIX [

The solutions for ring loading in an isotropic half space are given below. Here u is the shear modulus and v
is the Poisson ratio. These expressions can be obtained from Section 7 using the isotropic limits given in Appendix
H and the limits for the double sums below.
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! L=y

)

S+ DGy -

i (=0 m, + 1)1z, +h,)

(m, —m;) i) as

= 4—({%‘) RO =v)(1 =22 f+ )+ {2201 = vy —h(1 =20} f =+ —chf" =+ ). 1)

[ Lo (=y"'m
)" (m,+ D) iz, +hy)
(”7|*m:);:\(m,+l)(}1‘ );,Zl( ym M '

4(11_‘_) B =) fz4+h) =200 =+ +zhf (c+ )] (12)

1 (vl)”'[,,—(1+m,)n]
(my —m-) ‘5 Vi, + 1y —

Z( D Hom, = D f(z,+h)

[2(1—\)(1+h\)/( +h) 4+ 1220 =) —h(1+2v) [ [z +h)y = zhf"(z+ )], (13)

41—
2 _l)/ 1” 2 . ]
(m. Z — "ZI D (m, + D) fiz,+h,)
1 )
=30y R R - D1 —v)+hif (c+h) +zhf"(z+ 0], (14)
L S ot 4 1) e, ) =~ (21— ) f Ry — B+ D) (15)
(mlfmz),ﬁ.(:w—m,.;(—) (m,+ 1) fiz, ,,)72”“) (1=v)f(z 1f"( .
! S (YT S =D e
z,+h,
) & e D7) ) S+ h)
= i) [(1 —2\')%/'(:#—/1) + (=20 =+ f (z+h) +:zhf"(z+h)]. (16)
1 = (=D~ 'm, — 1) m,+ Dy,
(ml_nIZ)r—l(n1/+l)(:"l_)'2):nzl m, fGith)
:ﬁ[zu—v)(l-zv)/ F 20 =h—z(1 =20 c+h) —zhf"(z+ W], (A7)

1 (=1 = A myd Z (=) om,+1

Y,
“flz+h,)
(mi—my) = 7 m+DG - 5 nt, ’

—1
=iy (1201 =20 fz+ M)+ {=(L =2v) +h(1 +20) } f (= + W) +zhf" (z+ )], (18)

4(1—v)
: S DT S DT e+ Dy
(my —my) /50 G =72) 5 m, fzi+h)
"(1 [7(17 Vet +iz(1=20) = hif =+ Ry +2hf"(z+ b)), (19)
1 (-n" (— 1" om, 4+ 1), - B
(my —m, 'Z ,m:nz. "y feth) = 55 [0 =20 G+ R (110

The following notation is also used below.
'(uoviz) =Ipevi ). z>="0 I(povis)=Hupv:is), =" Z=z—h. "=z+h. (I11)

Ring normal loading

8;(Qla [ 70 L) =B =) z—m1"0. 1 1) +4(1 —v)(1 =2v}7(0, 1:0)—2hz1"(0,1:2)], (112)
Qu . . 2 g
= [(3—4v}"(0,0;0)+27(0.0: 1)+ (5—12v+8v")["(0,0:0)
(1 —v)

+:"(3—4v)"(0.0; 1)+ 2A17(0.0: 2)]. (I13)
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o = 4“Q [4v1(0.0: 1)+ 4(1 —2)1(0,0: 1) - Z1'(0.0:2)
+ (A3 +4v) —z(3—4v) 117(0.0:2) = 2hz1"(0,0: 3)]. (I4)
6. = — 4(]Q (201 = )7/ (0,0; 1)+ 2(1 =) 17(0,0: 1)+ =1(0.0;2)
423 =) 170,05 2) + 2h=17(0.0: 3)). (115)
i2¢
o= - 2 G0.0:2) 4401 — (1 - 210G (0.0: 1)
4(1—v)
— (3=~ MG"(0,0;2) ~2h=G"(0,0: 3. (116)
= ﬁ;’e (=200 (0,12 1) = (1= 2770 1: 1)+ 210, 1:2)
F23= ) R 0.1:2) = 20170, 1 3)). 117

Ring shear loading in the x and y directions

R .
W= lou(l — [S (7-8)°(0.0:0)+ (9 16v+ 8v3)1 0.0:0)

S10.0; 1) —2"(3— )7 (0.0: 1) +2h=1"(0.032)}
—S5e™ G (0.0:0)— (1 —8v+8v)G"(0.0:0) +2'G'(0.0: 1)
23 —4v)G (0.0 1) —2h=G"(0.0:2)’]. (118)

[S.cosp+ S, sin ][z (0.1 1) +4(1~v)(1 —2v)I"(0,1:0)

8/1(1— ')
+(3—4v)(z—MI"(0.1:1)=2hz1"(0.1:2)]. 119)
o, = 7T“_\_)» [S.cos g+ 5, sing)[37(0.1:1)—=1°(0. 1:2)+(5—8v))I"(0,1: 1)
— M3+ 4 + (3= 40) (0. 1:2) + 2h=17(0. 1: 3)]. (120)
.. = ﬁ (S, cosp+ 8, sin@|[(1 -2 (0. 1: 1) — = 7(0.1:2) — (1 —2v)"(0. 1 1)
+[h—=(3-4]7"(0,1:2)+2h=1"(0. 1: 3)]. (121)
0. = —STIILT[Se“’{Uf&-)I’(O. L)+ (9— 16y +8)17(0. 1: 1)

=210, 1:2) = (3—4v)="1"(0.1:2) = 2h=1"(0. 1. 3)}
=8 —H (0.1 D)+ (1 —=8v+8y)H"(0,1: 1)~ H(0.1:2)
— "B H"(0,1;2)+2h=H"(0.1:3)]]. (122)

7= — 8(1 SIS =D 0.0:1) 440 01 0.0 1) =2 10.0:2)
—[h+2(3—4v)]7"(0.0:2)+ 24=1"(0.0:3)}
=85 GN0,0:2)+ [h+2(3—4v)]G(0,0:2) = 2h=G (0,0 3)}]. (123)

Ring shear loading in the p and ¢ directions

= —S‘ LGB =4 (L 10y =T (L T 1)+ (5—12v+8v)I7(1.1:0)
Bu(l—v)
—z"G=An 7 (L +2hz1 (1 2+ S,I,C’“[I'(l.l:0)+l”(l.110)]. (124)
W= ‘S,,[ (L0 1) +4(1 —v){l —2v)1"(1,0:0)
8u(l

+B—d N =—h)I"(1,0:1)—2h=1"(1.0:2)], (125)
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a . Yy 9 Qe .
(e =m5},[31(1«0.[) S0 D)+ (5—8v )] (1.0: 1)
—[AG+4v)+2(3—40)["(1.0:2)+2hz1"(1,0: 3)]. (126)
go=m - S22 (1.0: 1) —1(1.0:2) — (1 - 20)1"(1.0: 1)
4l —v) 7
+[h—z(3—40]I"(1.0:2) +2h=1"(1.0; 3)], 127)
g: = 4(1%\.)S,,e‘z"’[(374v)G'(l.0:|)7:'G’(1.0:2)+(5A 12v+8v)G“(1,0: 1)
—(3—4v)z"G"(1,0:2) 4+ 2h=G"(1.0:3)}+iaS, e"*[G (1.0 )+ G"(1.0: 1)]. (128)
I 1 By 4 == 21— :
T. 4(17\')5,,8 A== 2y 420 =700 15 1)
7[h+:(374v)]1”(].1;2)+2/7:1"(].1;3)]71;(;50.,6’“’[1'(1.I:l)+1”(],1:l)]. (129)

A check on the analysis used to derive the above results was performed. This consisted of taking the Mindlin
(1936) solution and integrating it around the circumference of a circle at a distance of /# below the surface of an
isotropic half space. The derivation was non-trivial and rather lengthy, however it provided results consistent with
the above. This provides a check on the point force potentials in eqns (93) and (94), the elastic fields in eqns (97)-
(102), (104)—(109), (111)—(116) and the isotropic limits of the sums (H1)-(H10) and the double sums in eqns (11)-
(110).



